
Open CASCADE Technology
7.3.0

Upgrade from older OCCT versions

May 26, 2018

CONTENTS 1

Contents

1 Introduction . 4

1.1 Precautions . 4

1.2 Disclaimer . 4

2 Upgrade to OCCT 6.5.0 . 5

3 Upgrade to OCCT 6.5.1 . 6

4 Upgrade to OCCT 6.5.2 . 7

5 Upgrade to OCCT 6.5.3 . 8

6 Upgrade to OCCT 6.5.4 . 9

7 Upgrade to OCCT 6.6.0 . 10

8 Upgrade to OCCT 6.7.0 . 12

8.1 Object-level clipping and capping algorithm. 12

8.2 Redesign of markers presentation . 12

8.3 Default views are not created automatically . 12

8.4 Improved dimensions implementation . 12

8.5 NCollection_Set replaced by List collection . 13

9 Upgrade to OCCT 6.8.0 . 14

9.1 Changes in NCollection classes . 14

9.2 3D View Camera . 14

9.3 Redesign of Connected Interactive Objects . 14

9.4 Support of UNICODE Characters . 15

9.5 Elimination of Projection Shift Concept . 15

10 Upgrade to OCCT 6.9.0 . 16

10.1 3D Viewer initialization . 16

10.2 Changes in Selection . 16

10.3 Changes in Adaptor3d_Curve class . 17

10.4 Changes in V3d_View class . 17

11 Upgrade to OCCT 7.0.0 . 18

11.1 Removal of legacy persistence . 18

11.2 Removal of CDL and WOK . 19

11.2.1 Automatic upgrade . 19

11.2.2 Possible compiler errors . 21

11.2.3 Possible runtime problems . 23

(c) Open CASCADE 2018

CONTENTS 2

11.2.4 Option to avoid cast of handle to reference to base type 23

11.2.5 Preserving compatibility with OCCT 6.x . 24

11.2.6 Applications based on CDL and WOK . 24

11.3 Separation of BSpline cache . 25

11.4 Structural result of Boolean operations . 25

11.5 BRepExtrema_ExtCC finds one solution only . 25

11.6 Removal of SortTools package . 25

11.7 On-screen objects and ColorScale . 26

11.8 UserDraw and Visual3d . 26

11.9 Deprecation of Local Context . 28

11.10Separation of visualization part from TKCAF . 28

11.11Correction of interpretation of Euler angles in gp_Quaternion . 28

11.12Zoom Persistent Selection . 29

11.13Texture mapping of objects . 29

11.14Shape presentation builders . 29

12 Upgrade to OCCT 7.1.0 . 30

12.1 Presentation attributes . 30

12.2 Typedefs . 30

12.3 Programmable Pipeline . 30

12.4 Transformation persistence . 31

12.5 Dynamic highlight and selection properties . 31

12.6 Correction in TObj_Model class . 31

12.7 Redundant environment variables . 31

12.8 Removed features . 32

12.9 Other changes . 32

13 Upgrade to OCCT 7.2.0 . 34

13.1 Removed features . 34

13.2 Corrections in BRepOffset API . 34

13.3 Corrections in BRepOffset API . 35

13.4 Highlight style . 35

13.5 Elimination of implicit 3D Viewer updates . 36

13.6 Elimination of Quantity_NameOfColor from TKV3d interface classes 36

13.7 Result of Boolean operations on containers . 37

13.8 Other changes . 37

13.9 BOP - Pairs of interfering indices . 37

13.10Removal of the Draw commands based on old Boolean operations 38

13.11Change of Face/Face intersection in Boolean operations . 38

13.12Restore OCCT 6.9.1 persistence . 38

13.13Change in BRepLib_MakeFace algorithm . 39

(c) Open CASCADE 2018

CONTENTS 3

13.14Change in BRepFill_OffsetWire algorithm . 39

13.15Change in Geom(2d)Adaptor_Curve::IsPeriodic . 40

13.16Change in algorithm ShapeUpgrade_UnifySameDomain . 40

13.17Changes in STL Reader / Writer . 40

13.18Refactoring of the Error/Warning reporting system in Boolean Component 40

14 Upgrade to OCCT 7.2.1 . 41

14.1 Changes in ShapeUpgrade_UnifySameDomain . 41

14.2 Moving BuildPCurveForEdgeOnPlane from BOPTools_AlgoTools2D to BRepLib 41

14.3 Removed features . 41

15 Upgrade to OCCT 7.3.0 . 43

15.1 Light sources . 43

15.2 Shading Models . 43

15.3 Custom low-level OpenGL elements . 43

15.4 Changes in BOPAlgo_Section . 43

15.5 Changes in BRepAdaptor_CompCurve . 43

15.6 Removed features . 44

15.7 Boolean Operations - Solid Builder algorithm . 44

15.8 Boolean Operation classes in BRepAlgo are deprecated . 44

15.9 Unification of the Error/Warning reporting system of Application Framework 44

(c) Open CASCADE 2018

1 Introduction 4

1 Introduction

This document provides technical details on changes made in particular versions of OCCT. It can help to upgrade
user applications based on previous versions of OCCT to newer ones.

1.1 Precautions

Back-up your code before the upgrade. We strongly recommend using version control system during the upgrade
process and saving one or several commits at each step of upgrade, until the overall result is verified. This will
facilitate identification and correction of possible problems that can occur at the intermediate steps of upgrade. It is
advisable to document each step carefully to be able to repeat it if necessary.

1.2 Disclaimer

This document describes known issues that have been encountered during porting of OCCT and some applications
and approaches that have helped to resolve these issues in known cases. It does not pretend to cover all possible
migration issues that can appear in your application. Take this document with discretion; apply your expertise and
knowledge of your application to ensure the correct result.

The automatic upgrade tool is provided as is, without warranty of any kind, and we explicitly disclaim any liability
for possible errors that may appear due to use of this tool. It is your responsibility to ensure that the changes you
made in your code are correct. When you upgrade the code by an automatic script, make sure to carefully review
the introduced changes at each step before committing them.

(c) Open CASCADE 2018

2 Upgrade to OCCT 6.5.0 5

2 Upgrade to OCCT 6.5.0

Porting of user applications from an earlier OCCT version to version 6.5 requires taking into account the following
major changes:

• If you are not comfortable with dependence on Intel TBB, FreeImage, or Gl2Ps libraries, you will need to
(re)build OCCT with these dependencies disabled.

• The low-level format version of OCAF binary and XML persistence has been incremented. Hence, the files
saved by OCCT 6.5 to OCAF binary or XML format will not be readable by previous versions of OCCT.

• The BRepMesh triangulation algorithm has been seriously revised and now tries hard to fulfill the requested
deflection and angular tolerance parameters. If you experience any problems with performance or triangula-
tion quality (in particular, display of shapes in shading mode), consider revising the values of these parameters
used in your application.

• If you were using method ToPixMap() of class V3d_View to get a buffer for passing to Windows API functions
(e.g. BitBlt), this will not work anymore. You will need to use method Image_PixMap::AccessBuffer() to get
the raw buffer data that can be further passed to WinAPI functions.

• As the processing of message gravity parameter in Message package has been improved, some application
messages (especially the ones generated by IGES or STEP translators) can be suppressed or new messages
appear in the application. Use relevant message level parameter to tune this behavior.

(c) Open CASCADE 2018

3 Upgrade to OCCT 6.5.1 6

3 Upgrade to OCCT 6.5.1

Porting of user applications from an earlier OCCT version to version 6.5.1 requires taking into account the following
major changes:

• Method Graphic3d_Structure::Groups() now returns Graphic3d_SequenceOfGroup. If this method has been
used, the application code should be updated to iterate another collection type or, if Graphic3d_HSetOfGroup
is required, to fill its own collection:

const Graphic3d_SequenceOfGroup& aGroupsSeq = theStructure.Groups();
Handle(Graphic3d_HSetOfGroup) aGroupSet = new Graphic3d_HSetOfGroup();
Standard_Integer aLen = aGroupsSeq.Length();
for (Standard_Integer aGr = 1; aGr <= aLen; ++aGr)
{
aGroupSet->Add (aGroupsSeq.Value (aGr));
}

• All occurrences of Select3D_Projector in the application code (if any) should be replaced with Handle(←↩
Select3D_Projector).

• The code of inheritors of Select3D_SensitiveEntity should be updated if they override Matches() (this is prob-
able, if clipping planes are used).

• Constructor for V3d_Plane has been changed, so the extra argument should be removed if used in the
application. It is necessary to add a new plane using method V3d_Viewer::AddPlane() if V3d_Viewer has
been used to manage clipping planes list (this does not affect clipping planes representation). Please, have
a look at the source code for new DRAWEXE vclipplane command in ViewerTest_ObjectsCommands.cxx,
VClipPlane to see how clipping planes can be managed in the application.

(c) Open CASCADE 2018

4 Upgrade to OCCT 6.5.2 7

4 Upgrade to OCCT 6.5.2

Porting of user applications from an earlier OCCT version to version 6.5.2 requires taking into account the following
major changes:

• Any code that has been generated by WOK from CDL generic classes Tcollection_DataMap and Tcollection←↩
_IndexedDataMap needs to be regenerated by WOK to take into account the change in the interface of these
classes.

• The enumerations CDF_StoreStatus and CDF_RetrievableStatus have been replaced by the enumerations
PCDM_StoreStatus and PCDM_ReaderStatus. Correspondingly, the methods Open, Save and SaveAs of
the class TDocStd_Application have changed their return value. Any code, which uses these enumerations,
needs to be updated.

• BRepLib_MakeFace has been modified to receive tolerance value for resolution of degenerated edges. This
tolerance parameter has no default value to ensure that the client code takes care of passing a meaningful
value, not just Precision::Confusion, so some porting overheads are expected.

• If the callback mechanism in call_togl_redraw function was used in the application code, it is necessary to
revise it to take into account the new callback execution and provide a check of reason value of Aspect_←↩
GraphicCallbackStruct in callback methods to confirm that the callback code is executed at the right moment.
Now the callbacks are executed before redrawing the underlayer, before redrawing the overlayer and at the
end of redrawing. The information about the moment when the callback is invoked is provided with the reason
value in form of an additional bit flag (OCC_PRE_REDRAW, OCC_PRE_OVERLAY). The state of OpenGl
changed in callback methods will not be restored automatically, which might lead to unwanted behavior in
redrawing procedure.

• The print method used in the application code might need to be revised to take into account the ability to
choose between print algorithms: tile and stretch. The stretch algorithm will be selected by default during
porting.

• It is recommended to BRepMesh_DiscretFactory users, to check BRepMesh_DiscretFactory::SetDefault() re-
turn value to determine plugin availability / validity. BRepMesh_DiscretFactory::Discret() method now returns
handle instead of pointer. The code should be updated in the following manner:

Handle(BRepMesh_DiscretRoot) aMeshAlgo = BRepMesh_DiscretFactory::Get().Discret (theShape, theDeflection,
theAngularToler);

if (!aMeshAlgo.IsNull()) {}

• The default state of BRepMesh parallelization has been turned off. The user should switch this flag explicitly:

– by using methods BRepMesh_IncrementalMesh::SetParallel(Standard_True) for each BRepMesh_←↩
IncrementalMesh instance before Perform();

– by calling BRepMesh_IncrementalMesh::SetParallelDefault(Standard_True) when BRepMesh_←↩
DiscretFactory is used to retrieve the meshing tool (this also affects auto-triangulation in AIS).

(c) Open CASCADE 2018

5 Upgrade to OCCT 6.5.3 8

5 Upgrade to OCCT 6.5.3

Porting of user applications from an earlier OCCT version to version 6.5.3 requires taking into account the following
major changes:

• As a result of code clean-up and redesign of TKOpenGl driver, some obsolete functions and render-
ing primitives (TriangleMesh, TriangleSet, Bezier, Polyline, Polygon, PolygonHoles, QuadrangleMesh and
QuadrangleSet) have been removed. Instead, the application developers should use primitive arrays that
provide the same functionality but are hardware-accelerated. The details can be found in OCCT Visualization
User's Guide, “Primitive Arrays” chapter.

• Applications should not call AIS_InteractiveObject::SetPolygonOffsets() method for an instance of AIS_←↩
TexturedShape class after it has been added to AIS_InteractiveContext. More generally, modification of
Graphic3d_AspectFillArea3d parameters for the computed groups of any AIS_InteractiveObject subclass that
uses texture mapping should be avoided, because this results in broken texture mapping (see issue 23118).
It is still possible to apply non-default polygon offsets to AIS_TexturedShape by calling SetPolygonOffsets()
before displaying the shape.

• The applications that might have used internal functions provided by TKOpenGl or removed primitives will
need to be updated.

• In connection with the implementation of Z-layers it might be necessary to revise the application code or
revise the custom direct descendant classes of Graphic3d_GraphicDriver and Graphic3d_StructureManager
to use the Z-layer feature.

• Global variables Standard_PI and PI have been eliminated (use macro M_PI instead).

• Method HashCode() has been removed from class Standard_Transient. It is advisable to use global function
HashCode() for Handle objects instead.

• Declaration of operators new/delete for classes has become consistent and is encapsulated in macros.

• Memory management has been changed to use standard heap (MMGT_OPT=0) and reentrant mode (MM←↩
GT_REENTRANT=1) by default.

• Map classes in NCollection package now receive one more argument defining a hash tool.

(c) Open CASCADE 2018

6 Upgrade to OCCT 6.5.4 9

6 Upgrade to OCCT 6.5.4

Porting of user applications from an earlier OCCT version to version 6.5.4 requires taking into account the following
major changes:

• The code using obsolete classes Aspect_PixMap, Xw_PixMap and WNT_PixMap should be rewritten imple-
menting class Image_PixMap, which is now retrieved by ToPixMap methods as argument. A sample code
using ToPixMap is given below:

#include <Image_AlienPixMap.hxx>
void dump (Handle(V3d_View)& theView3D)
{
Standard_Integer aWndSizeX = 0;
Standard_Integer aWndSizeY = 0;
theView3D->Window()->Size (aWndSizeX, aWndSizeY);
Image_AlienPixMap aPixMap;
theView3D->ToPixMap (aPixMap, aWndSizeX, aWndSizeY);
aPixMap.Save ("c:\\image.png");

}

• Now OpenGL resources related to Interactive Objects are automatically freed when the last view (window) is
removed from graphical driver. To avoid presentation data loss, the application should replace an old view
with a new one in the proper order: first the new view is created and activated and only then the old one is
detached and removed.

• It is recommended to use NCollection containers with hasher parameter (introduced in 6.5.3) instead of global
definition IsEqual()/HashCode() as well as to use explicit namespaces to avoid name collision.

(c) Open CASCADE 2018

7 Upgrade to OCCT 6.6.0 10

7 Upgrade to OCCT 6.6.0

Porting of user applications from an earlier OCCT version to version 6.6.0 requires taking into account the following
major changes:

• Due to the changes in the implementation of Boolean Operations, the order of sub-shapes resulting from the
same operation performed with OCCT 6.5.x and OCCT 6.6.0 can be different. It is necessary to introduce
the corresponding changes in the applications for which the order of sub-shapes resulting from a Boolean
operation is important. It is strongly recommended to use identification methods not relying on the order of
sub-shapes (e.g. OCAF naming).

• If you need to use OCCT on Mac OS X with X11 (without Cocoa), build OCCT with defined pre-processor
macro CSF_MAC_USE_GLX11. XLib front-end (previously the only way for unofficial OCCT builds on Mac
OS X) is now disabled by default on this platform. If your application has no support for Cocoa framework
you may build OCCT with XLib front-end adding MACOSX_USE_GLX macro to compiler options (you may
check the appropriate option in WOK configuration GUI and in CMake configuration). Notice that XQuartz
(XLib implementation for Mac OS X) now is an optional component and does not provide a sufficient level of
integrity with native (Cocoa-based) applications in the system. It is not possible to build OCCT with both XLib
and Cocoa at the same time due to symbols conflict in OpenGL functions.

• Animation mode and degeneration presentation mode (simplified presentation for animation) and associ-
ated methods have been removed from 3D viewer functionality. Correspondingly, the code using meth-
ods SetAnimationModeOn(), SetAnimationModeOff(), AnimationModeIsOn(), AnimationMode(), Tumble(),
SetDegenerateModeOn(), SetDegenerateModeOff() and DegenerateModeIsOn() of classes V3d_View and
Visual3d_View will need to be removed or redesigned. Please, notice that Hidden Line Removal presen-
tation was not affected; however, the old code that used methods V3d_View::SetDegenerateModeOn or
V3d_View::SetDegenerateModeOff to control HLR presentation should be updated to use V3d_View::Set←↩
ComputedMode method instead.

• Calls of Graphic3d_Group::BeginPrimitives() and Graphic3d_Group::EndPrimitives() should be removed from
the application code.

• Application functionality for drawing 2D graphics that was formerly based on TKV2d API should be migrated
to TKV3d API. The following changes are recommended for this migration:

– A 2D view can be implemented as a V3d_View instance belonging to V3d_Viewer managed by AIS←↩
_InteractiveContext instance. To turn V3d_View into a 2D view, the necessary view orientation should
be set up at the view initialization stage using V3d_View::SetProj() method, and view rotation methods
simply should not be called.

– Any 2D graphic entity (formerly represented with AIS2D_InteractiveObject) should become a class de-
rived from AIS_InteractiveObject base. These entities should be manipulated in a view using AIS_←↩
InteractiveContext class API.

– All drawing code should be put into Compute() virtual method of a custom interactive object class and
use API of Graphic3d package. In particular, all geometry should be drawn using class hierarchy derived
from Graphic3d_ArrayOfPrimitives. Normally, the Z coordinate for 2D geometry should be constant,
unless the application implements some advanced 2D drawing techniques like e.g. multiple "Z layers"
of drawings.

– Interactive selection of 2D presentations should be set up inside ComputeSelection() virtual method of
a custom interactive object class, using standard sensitive entities from Select3D package and standard
or custom entity owners derived from SelectMgr_EntityOwner base. Please refer to the Visualization
User's Guide for further details concerning OCCT 3D visualization and selection classes. See also
Viewer2D OCCT sample application, which shows how 2D drawing can be implemented using TKV3d
API.

• Run-time graphic driver library loading mechanism based on CSF_GraphicShr environment variable usage
has been replaced by explicit linking against TKOpenGl library. The code sample below shows how the
graphic driver should be created and initialized in the application code:

// initialize a new viewer with OpenGl graphic driver
Handle(Graphic3d_GraphicDriver) aGraphicDriver =

(c) Open CASCADE 2018

7 Upgrade to OCCT 6.6.0 11

new OpenGl_GraphicDriver ("TKOpenGl");
aGraphicDriver->Begin (new Aspect_DisplayConnection());
TCollection_ExtendedString aNameOfViewer ("Visu3D");
Handle(V3d_Viewer) aViewer

= new V3d_Viewer (aGraphicDriver, aNameOfViewer.ToExtString());
aViewer->Init();

// create a new window or a wrapper over the existing window,
// provided by a 3rd-party framework (Qt, MFC, C# or Cocoa)
#if defined(_WIN32) || defined(__WIN32__)
Aspect_Handle aWindowHandle = (Aspect_Handle)winId();
Handle(WNT_Window) aWindow = new WNT_Window (winId());

#elif defined(__APPLE__) && !defined(MACOSX_USE_GLX)
NSView* aViewHandle = (NSView*)winId();
Handle(Cocoa_Window) aWindow = new Cocoa_Window (aViewHandle);

#else
Aspect_Handle aWindowHandle = (Aspect_Handle)winId();
Handle(Xw_Window) aWindow =

new Xw_Window (aGraphicDriver->GetDisplayConnection(), aWindowHandle);
#endif // WNT

// setup the window for a new view
Handle(V3d_View) aView = aViewer->CreateView();
aView->SetWindow (aWindow);

• The following changes should be made in the application-specific implementations of texture aspect:

– Graphic3d_TextureRoot inheritors now should return texture image by overloading of Graphic3d_←↩
TextureRoot::GetImage() method instead of the old logic.

– Now you can decide if the application should store the image copy as a field of property or reload it
dynamically each time (to optimize the memory usage). The default implementation (which loads the
image content from the provided file path) does not hold an extra copy since it will be uploaded to the
graphic memory when first used.

– Notice that the image itself should be created within Image_PixMap class from AlienImage package,
while Image_Image class is no more supported and will be removed in the next OCCT release.

(c) Open CASCADE 2018

8 Upgrade to OCCT 6.7.0 12

8 Upgrade to OCCT 6.7.0

Porting of user applications from an earlier OCCT version to version 6.7.0 requires taking into account the following
major changes.

8.1 Object-level clipping and capping algorithm.

• It might be necessary to revise and port code related to management of view-level clipping to use Graphic3d←↩
_ClipPlane instead of V3d_Plane instances. Please note that V3d_Plane class has been preserved – as
previously, it can be used as plane representation. Another approach to represent Graphic3d_ClipPlane in a
view is to use custom presentable object.

• The list of arguments of Select3D_SensitiveEntity::Matches() method for picking detection has changed. S-
ince now, for correct selection clipping, the implementations should perform a depth clipping check and return
(as output argument) minimum depth value found at the detected part of sensitive. Please refer to CDL /
Doxygen documentation to find descriptive hints and snippets.

• Select3D_SensitiveEntity::ComputeDepth() abstract method has been removed. Custom implementations
should provide depth checks by method Matches() instead – all data required for it is available within a scope
of single method.

• It might be necessary to revise the code of custom sensitive entities and port Matches() and Compute←↩
Depth() methods to ensure proper selection clipping. Please note that obsolete signature of Matches is not
used anymore by the selector. If your class inheriting Select3D_SensitiveEntity redefines the method with old
signature the code should not compile as the return type has been changed. This is done to prevent override
of removed methods.

8.2 Redesign of markers presentation

• Due to the redesign of Graphic3d_AspectMarker3d class the code of custom markers initialization should
be updated. Notice that you can reuse old markers definition code as TColStd_HArray1OfByte; however,
Image_PixMap is now the preferred way (and supports full-color images on modern hardware).

• Logics and arguments of methods AIS_InteractiveContext::Erase() and AIS_InteractiveContext::EraseAll()
have been changed. Now these methods do not remove resources from Graphic3d_Structure; they simply
change the visibility flag in it. Therefore, the code that deletes and reomputes resources should be revised.

• Graphic3d_Group::MarkerSet() has been removed. Graphic3d_Group::AddPrimitiveArray() should be used
instead to specify marker(s) array.

8.3 Default views are not created automatically

As the obsolete methods Init(), DefaultOrthographicView() and DefaultPerspectiveView() have been removed from
V3d_Viewer class, the two default views are no longer created automatically. It is obligatory to create V3d_View
instances explicitly, either directly by operator new or by calling V3d_Viewer::CreateView().

The call V3d_Viewer::SetDefaultLights() should also be done explicitly at the application level, if the application
prefers to use the default light source configuration. Otherwise, the application itself should set up the light sources
to obtain a correct 3D scene.

8.4 Improved dimensions implementation

• It might be necessary to revise and port code related to management of AIS_LengthDimension, AIS_←↩
AngleDimension and AIS_DiameterDimension presentations. There is no more need to compute value of
dimension and pass it as string to constructor argument. The value is computed internally. The custom value
can be set with SetCustomValue() method.

(c) Open CASCADE 2018

8.5 NCollection_Set replaced by List collection 13

• The definition of units and general aspect properties is now provided by Prs3d_DimensionUnits and Prs3d←↩
_DimensionApsect classes.

• It might be also necessary to revise code of your application related to usage of AIS_DimensionDisplayMode
enumeration. If it used for specifying the selection mode, then it should be replaced by a more appropriate
enumeration AIS_DimensionSelectionMode.

8.5 NCollection_Set replaced by List collection

It might be necessary to revise your application code, which uses non-ordered Graphic3d_SetOfHClipPlane collec-
tion type and replace its occurrences by ordered Graphic3d_SequenceOfHClipPlane collection type.

(c) Open CASCADE 2018

9 Upgrade to OCCT 6.8.0 14

9 Upgrade to OCCT 6.8.0

Porting of user applications from an earlier OCCT version to version 6.8.0 requires taking into account the following
major changes.

9.1 Changes in NCollection classes

Method Assign() in NCollection classes does not allow any more copying between different collection types. Such
copying should be done manually.

List and map classes in NCollection package now require that their items be copy-constructible, but do not require
items to have default constructor. Thus the code using NCollection classes for non-copy-constructible objects needs
be updated. One option is to provide copy constructor; another possibility is to use Handle or other smart pointer.

9.2 3D View Camera

If ViewMapping and ViewOrientation were used directly, this functionality has to be ported to the new camera
model. The following methods should be considered as an alternative to the obsolete Visual3d services (all points
and directions are supposed to be in world coordinates):

• Graphic3d_Camera::ViewDimensions() or V3d_View::Size()/ZSize() – returns view width, height and depth
(or "Z size"). Since the view is symmetric now, you can easily compute top, bottom, left and right limits.
Graphic3d_Camera::ZNear()/ZFar() can be used to obtain the near and far clipping distances with respect to
the eye.

• Graphic3d_Camera::Up() or V3d_View::Up() – returns Y direction of the view.

• Graphic3d_Camera::Direction() returns the reverse view normal directed from the eye, V3d_View::Proj() re-
turns the old-style view normal.

• Graphic3d_Camera::Eye() or V3d_View::Eye() – returns the camera position (same as projection reference
point in old implementation).

• Graphic3d_Camera::Center() or V3d_View::At() – returns the point the camera looks at (or view reference
point according to old terminology).

The current perspective model is not fully backward compatible, so the old perspective-related functionality needs
to be reviewed.

Please revise application-specific custom presentations to provide proper bounding box. Otherwise object might
become erroneously clipped by automatic ZFit or frustum culling algorithms enabled by default.

9.3 Redesign of Connected Interactive Objects

The new implementation of connected Interactive Objects makes it necessary to take the following steps if you use
connected Interactive Objects in your application.

• Use new PrsMgr_PresentableObject transformation API.

• Call RemoveChild() from the original object after connect if you need the original object and AIS_Connected←↩
Interactive to move independently.

• Access instances of objects connected to AIS_MultiplyConnectedInteractive with Children() method.

• For PrsMgr_PresentableObject transformation:

– SetLocation (TopLoc_Location) -> SetLocalTransformation (gp_Trsf)

– Location -> LocalTransformation

– HasLocation -> HasTransformation

– ResetLocation -> ResetTransformation

(c) Open CASCADE 2018

9.4 Support of UNICODE Characters 15

9.4 Support of UNICODE Characters

Support of UNICODE characters introduced in OCCT breaks backward compatibility with applications, which cur-
rently use filenames in extended ASCII encoding bound to the current locale. Such applications should be updated
to convert such strings to UTF-8 format.

The conversion from UTF-8 to wchar_t is made using little-endian approach. Thus, this code will not work correctly
on big-endian platforms. It is needed to complete this in the way similar as it is done for binary persistence (see the
macro DO_INVERSE in FSD_FileHeader.hxx).

9.5 Elimination of Projection Shift Concept

It might be necessary to revise the application code, which deals with Center() method of V3d_View.

This method was used to pan a V3d view by virtually moving the screen center with respect to the projection ray
passed through Eye and At points. There is no more need to derive the panning from the Center parameter to get
a camera-like eye position and look at the coordinates. Eye() and At() now return these coordinates directly. When
porting code dealing with Center(), the parameters Eye() and At() can be adjusted instead. Also V3d_View::Set←↩
Center(Xpix, Ypix) method can be used instead of V3d_View::Center(X, Y) to center the view at the given point.
However, if the center coordinates X and Y come from older OCCT releases, calling V3d_View::Panning(-X, -Y) can
be recommended to compensate missing projection shift effect.

There are several changes introduced to Graphic3d_Camera. The internal data structure of the camera is based on
Standard_Real data types to avoid redundant application-level conversions and precision errors. The transformation
matrices now can be evaluated both for Standard_Real and Standard_ShortReal value types. ZNear and Z←↩
Far planes can be either negative or positive for orthographic camera projection, providing a trade-off between
the camera distance and the range of ZNear or ZFar to reduce difference of exponents of values composing the
orientation matrix - to avoid calculation errors. The negative values can be specified to avoid Z-clipping if the
reference system of camera goes inside of the model when decreasing camera distance.

The auto z fit mode, since now, has a parameter defining Z-range margin (the one which is usually passed as
argument to ZFitAll() method). The methods SetAutoZFitMode(), AutoZFitScaleFactor() and ZFitAll() from class
V3d_View deal with the new parameter.

The class Select3D_Projector now supports both orientation and projection transformation matrices, which can be
naturally set for the projector. The definition of projector was revised in StdSelect_ViewerSelector3d: perspective
and orthographic projection parameters are handled properly. Orthographic projector is based only on direction of
projection - no more Center property. This makes it possible to avoid unnecessary re-projection of sensitive while
panning, zooming or moving along the projection ray of the view. These operations do not affect the orthographic
projection.

(c) Open CASCADE 2018

10 Upgrade to OCCT 6.9.0 16

10 Upgrade to OCCT 6.9.0

Porting of user applications from an earlier OCCT version to version 6.9.0 requires taking into account the following
major changes.

10.1 3D Viewer initialization

3D Viewer now uses GLSL programs for managing frame buffer and stereoscopic output. For proper initialization,
application should configure CSF_ShadersDirectory environment variable pointing to a folder with GLSL resources
- files from folder CASROOT/src/Shaders. Note that CSF_ShadersDirectory become optional since OCCT 7.1.0
release.

10.2 Changes in Selection

Selection mechanism of 3D Viewer has been redesigned to use 3-level BVH tree traverse directly in 3D space
instead of projection onto 2D screen space (updated on each rotation). This architectural redesign may require
appropriate changes at application level in case if custom Interactive Objects are used.

Standard selection

Usage of standard OCCT selection entities would require only minor updates.

Custom Interactive Objects should implement new virtual method SelectMgr_SelectableObject::BoundingBox().

Now the method SelectMgr_Selection::Sensitive() does not return SelectBasics_SensitiveEntity. It returns an in-
stance of SelectMgr_SensitiveEntity, which belongs to a different class hierarchy (thus DownCast() will fail). To
access base sensitive it is necessary to use method SelectMgr_SensitiveEntity::BaseSensitive(). For example:

Handle(SelectMgr_Selection) aSelection = anInteractiveObject->Selection (aMode);
for (aSelection->Init(); aSelection->More(); aSelection->Next())
{

Handle(SelectBasics_SensitiveEntity) anEntity = aSelection->Sensitive()->BaseSensitive();
}

Custom sensitive entities

Custom sensitive entities require more complex changes, since the selection algorithm has been redesigned and
requires different output from the entities.

The method SelectBasics_SensitiveEntity::Matches() of the base class should be overridden following the new
signature:

Standard_Boolean Matches (SelectBasics_SelectingVolumeManager& theMgr, SelectBasics_PickResult& the←↩
PickResult), where theMgr contains information about the currently selected frustum or set of frustums (see Select←↩
Mgr_RectangularFrustum, SelectMgr_TrangularFrustum, SelectMgr_TriangularFrustumSet) and SelectBasics_←↩
PickResult is an output parameter, containing information about the depth of the detected entity and distance to
its center of geometry.

In the overridden method it is necessary to implement an algorithm of overlap and inclusion detection (the active
mode is returned by theMgr.IsOverlapAllowed()) with triangular and rectangular frustums.

The depth and distance to the center of geometry must be calculated for the 3D projection of user-picked screen
point in the world space. You may use already implemented overlap and inclusion detection methods for different
primitives from SelectMgr_RectangularFrustum and SelectMgr_TriangularFrustum, including triangle, point, axis-
aligned box, line segment and planar polygon.

Here is an example of overlap/inclusion test for a box:

if (!theMgr.IsOverlapAllowed()) // check for inclusion
{

Standard_Boolean isInside = Standard_True;
return theMgr.Overlaps (myBox.CornerMin(), myBox.CornerMax(), &isInside) && isInside;

}

(c) Open CASCADE 2018

10.3 Changes in Adaptor3d_Curve class 17

Standard_Real aDepth;
if (!theMgr.Overlaps (myBox, aDepth)) // check for overlap
{

return Standard_False;
}

thePickResult =
SelectBasics_PickResult (aDepth, theMgr.DistToGeometryCenter (myCenter3d));

The interface of SelectBasics_SensitiveEntity now contains four new pure virtual functions that should be imple-
mented by each custom sensitive:

• BoundingBox() – returns a bounding box of the entity;

• Clear() – clears up all the resources and memory allocated for complex sensitive entities;

• BVH() – builds a BVH tree for complex sensitive entities, if it is needed;

• NbSubElements() – returns atomic sub-entities of a complex sensitive entity, which will be used as primitives
for BVH building. If the entity is simple and no BVH is required, this method returns 1.

Each sensitive entity now has its own tolerance, which can be overridden by method SelectBasics_SensitiveEntity←↩
::SetSensitivityFactor() called from constructor.

10.3 Changes in Adaptor3d_Curve class

All classes inheriting Adaptor3d_Curve (directly or indirectly) must be updated in application code to use new sig-
nature of methods Intervals() and NbIntervals(). Note that no compiler warning will be generated if this is not done.

10.4 Changes in V3d_View class

The methods V3d_View::Convert and V3d_View::ConvertWithProj() have ceased to return point on the active grid.
It might be necessary to revise the code of your application so that V3d_View::ConvertToGrid() was called explicitly
for the values returned by V3d_View::Convert to get analogous coordinates on the grid. The methods V3d_←↩
View::Convert and V3d_View::ConvertWithProj convert point into reference plane of the view corresponding to the
intersection with the projection plane of the eye/view point vector.

(c) Open CASCADE 2018

11 Upgrade to OCCT 7.0.0 18

11 Upgrade to OCCT 7.0.0

Porting of user applications from an earlier OCCT version to version 7.0.0 requires taking into account the following
major changes.

Building OCCT now requires compiler supporting some C++11 features. The supported compilers are:

• MSVC: version 10 (Visual Studio 2010) or later

• GCC: version 4.3 or later

• CLang: version 3.6 or later

• ICC: version XE 2013 SP 1 or later

When compiling code that uses OCCT with GCC and CLang compilers, it is necessary to use compiler option
-std=c++0x (or its siblings) to enable C++11 features.

11.1 Removal of legacy persistence

Legacy persistence for shapes and OCAF data based on Storage_Schema (toolkits TKPShape, TKPLCAF, TKP←↩
CAF, TKShapeShcema, TLStdLSchema, TKStdSchema, and TKXCAFSchema) has been removed in OCCT 7.0.0.
The applications that used these data persistence tools need to be updated to use other persistence mechanisms.

Note

For compatibility with previous versions, the possibility to read standard OCAF data (TKLCAF and TKCAF)
from files stored in the old format is preserved (toolkits TKStdL and TKStd).

The existing data files in standard formats can be converted using OCCT 6.9.1 or a previous version, as follows.

Note

Reading / writing custom files capability from OCCT 6.9.1 is restored in OCCT 7.2.0. See details in Restore
OCCT 6.9.1 persistence section.

CSFDB files

Files in CSFDB format (usually with extension .csfdb) contain OCCT shape data that can be converted to BRep
format. The easiest way to do that is to use ImportExport sample provided with OCCT 6.9.0 (or earlier):

• Start ImportExport sample;

• Select File / New;

• Select File / Import / CSFDB... and specify the file to be converted;

• Drag the mouse with the right button pressed across the view to select all shapes by the rectangle;

• Select File / Export / BREP... and specify the location and name for the resulting file

OCAF and XCAF documents

Files containing OCAF data saved in the old format usually have extensions .std, .sgd or .dxc (XDE documents).
These files can be converted to XML or binary OCAF formats using DRAW Test Harness commands. Note that if the
file contains only attributes defined in TKLCAF and TKCAF, this action can be performed in OCCT 7.0; otherwise
OCCT 6.9.1 or earlier should be used.

For that, start DRAWEXE and perform the following commands:

(c) Open CASCADE 2018

11.2 Removal of CDL and WOK 19

• To convert ∗.std and ∗.sgd file formats to binary format ∗.cbf (The created document should be in BinOcaf
format instead of MDTV-Standard):

Draw[]> pload ALL
Draw[]> Open [path to *.std or *.sgd file] Doc
Draw[]> Format Doc BinOcaf
Draw[]> SaveAs Doc [path to the new file]

• To convert ∗.dxc file format to binary format ∗.xbf (The created document should be in BinXCAF format
instead of MDTV-XCAF):

Draw[]> pload ALL
Draw[]> XOpen [path to *.dxc file] Doc
Draw[]> Format Doc BinXCAF
Draw[]> XSave Doc [path to the new file]

On Windows, it is necessary to replace back slashes in the file path by direct slashes or pairs of back slashes.

Use XmlOcaf or XmlXCAF instead of BinOcaf and BinXCAF, respectively, to save in XML format instead of binary
one.

11.2 Removal of CDL and WOK

OCCT code has been completely refactored in version 7.0 to get rid of obsolete technologies used since its
inception: CDL (Cas.Cade Definition Language) and WOK (Workshop Organization Kit).

C++ code previously generated by WOK from CDL declarations is now included directly in OCCT sources.

This modification did not change names, API, and behavior of existing OCCT classes, thus in general the code
based on OCCT 6.x should compile and work fine with OCCT 7.0. However, due to redesign of basic mechanisms
(CDL generic classes, Handles and RTTI) using C++ templates, some changes may be necessary in the code when
porting to OCCT 7.0, as described below.

WOK is not necessary anymore for building OCCT from sources, though it still can be used in a traditional way
– auxiliary files required for that are preserved. The recommended method for building OCCT 7.x is CMake, see
occt_dev_guides__building_cmake. The alternative solution is to use project files generated by OCCT legacy tool
genproj, see occt_dev_guides__building_msvc, occt_dev_guides__building_code_blocks, and occt_dev_guides←↩
__building_xcode.

11.2.1 Automatic upgrade

Most of typical changes required for upgrading code for OCCT 7.0 can be done automatically using the upgrade
tool included in OCCT 7.0. This tool is a Tcl script, thus Tcl should be available on your workstation to run it.

Example:

$ tclsh
% source <path_to_occt>/adm/upgrade.tcl
% upgrade -recurse -all -src=<path_to_your_sources>

On Windows, the helper batch script upgrade.bat can be used, provided that Tcl is either available in PATH, or
configured via custom.bat script (for instance, if you use OCCT installed from Windows installer package). Start it
from the command prompt:

cmd> <path_to_occt>\upgrade.bat -recurse -all -inc=<path_to_occt>\inc -src=<path_to_your_sources> [options]

Run the upgrade tool without arguments to see the list of available options.

The upgrade tool performs the following changes in the code.

1. Replaces macro DEFINE_STANDARD_RTTI by DEFINE_STANDARD_RTTIEXT, with second argument in-
dicating base class for the main argument class (if inheritance is recognized by the script):

DEFINE_STANDARD_RTTI(Class) -> DEFINE_STANDARD_RTTIEXT(Class, Base)

(c) Open CASCADE 2018

11.2 Removal of CDL and WOK 20

Note

If macro DEFINE_STANDARD_RTTI with two arguments (used in intermediate development versions
of OCCT 7.0) is found, the script will convert it to either DEFINE_STANDARD_RTTIEXT or DEFINE←↩
_STANDARD_RTTI_INLINE. The former case is used if current file is header and source file with the
same name is found in the same folder. In this case, macro IMPLEMENT_STANDARD_RTTI is injected
in the corresponding source file. The latter variant defines all methods for RTTI as inline, and does not
require IMPLEMENT_STANDARD_RTTIEXT macro.

2. Replaces forward declarations of collection classes previously generated from CDL generics (defined in T←↩
Collection package) by inclusion of the corresponding header:

class TColStd_Array1OfReal; -> #include <TColStd_Array1OfReal.hxx>

3. Replaces underscored names of Handle classes by usage of a macro:

Handle_Class -> Handle(Class)

This change is not applied if the source or header file is recognized as containing the definition of Qt class with
signals or slots, to avoid possible compilation errors of MOC files caused by inability of MOC to recognize
macros (see http://doc.qt.io/qt-4.8/signalsandslots.html). The file is considered as
defining a Qt object if it contains strings Q_OBJECT and either slots: or signals:.

4. Removes forward declarations of classes with names Handle(C) or Handle_C, replacing them either by for-
ward declaration of its argument class, or (for files defining Qt objects) #include statement for a header with
the name of the argument class and extension .hxx:

class Handle(TColStd_HArray1OfReal); -> #include <TColStd_HArray1OfReal.hxx>

5. Removes #includes of files Handle_...hxx that have disappeared in OCCT 7.0:

#include <Handle_Geom_Curve.hxx> ->

6. Removes typedef statements that use Handle macro to generate the name:

typedef NCollection_Handle<Message_Msg> Handle(Message_Msg); ->

7. Converts C-style casts applied to Handles into calls to DownCast() method:

((Handle(A)&)b) -> Handle(A)::DownCast(b)
(Handle(A)&)b -> Handle(A)::DownCast(b)
(*((Handle(A)*)&b)) -> Handle(A)::DownCast(b)

((Handle(A))&b) -> Handle(A)::DownCast(b)
(*(Handle(A)*)&b) -> Handle(A)::DownCast(b)

8. Moves Handle() macro out of namespace scope:

Namespace::Handle(Class) -> Handle(Namespace::Class)

9. Converts local variables of reference type, which are initialized by a temporary object returned by call to
DownCast(), to the variables of non-reference type (to avoid using references to destroyed memory):

const Handle(A)& a = Handle(B)::DownCast (b); -> Handle(A) a (Handle(B)::DownCast (b));

10. Adds #include for all classes used as argument to macro STANDARD_TYPE(), except for already included
ones;

11. Removes uses of obsolete macros IMPLEMENT_DOWNCAST and IMPLEMENT_STANDARD_..., except
IMPLEMENT_STANDARD_RTTIEXT.

(c) Open CASCADE 2018

http://doc.qt.io/qt-4.8/signalsandslots.html

11.2 Removal of CDL and WOK 21

Note

If you plan to keep compatibility of your code with older versions of OCCT, add option -compat to avoid
this change. See also Preserving compatibility with OCCT 6.x.

As long as the upgrade routine runs, some information messages are sent to the standard output. In some cases
the warnings or errors like the following may appear:

Error in {HEADER_FILE}: Macro DEFINE_STANDARD_RTTI used for class {CLASS_NAME} whose declaration is not
found in this file, cannot fix

Be sure to check carefully all reported errors and warnings, as the corresponding code will likely require manual
corrections. In some cases these messages may help you to detect errors in your code, for instance, cases where
DEFINE_STANDARD_RTTI macro is used with incorrect class name as an argument.

11.2.2 Possible compiler errors

Some situations requiring upgrade cannot be detected and / or handled by the automatic procedure. If you get
compiler errors or warnings when trying to build the upgraded code, you will need to fix them manually. The
following paragraphs list known situations of this kind.

Missing header files

The use of handle objects (construction, comparison using operators == or !=, use of function STANDRAD_TYPE()
and method DownCast()) now requires the type of the object pointed by Handle to be completely known at compile
time. Thus it may be necessary to include header of the corresponding class to make the code compilable.

For example, the following lines will fail to compile if Geom_Line.hxx is not included:

Handle(Geom_Line) aLine = 0;
if (aLine != aCurve) {...}
if (aCurve->IsKind(STANDARD_TYPE(Geom_Line)) {...}
aLine = Handle(Geom_Line)::DownCast (aCurve);

Note that it is not necessary to include header of the class to declare Handle to it. However, if you define a class B
that uses Handle(A) in its fields, or contains a method returning Handle(A), it is advisable to have header defining
A included in the header of B. This will eliminate the need to include the header A in each source file where class B
is used.

Ambiguity of calls to overloaded functions

This issue appears in the compilers that do not support default arguments in template functions (known cases are
Visual C++ 10 and 11): the compiler reports an ambiguity error if a handle is used in the argument of a call to the
function that has two or more overloaded versions, receiving handles to different types. The problem is that operator
const handle<T2>& is defined for any type T2, thus the compiler cannot make the right choice.

Example:

void func (const Handle(Geom_Curve)&);
void func (const Handle(Geom_Surface)&);

Handle(Geom_TrimmedCurve) aCurve = new Geom_TrimmedCurve (...);
func (aCurve); // ambiguity error in VC++ 10

Note that this problem can be avoided in many cases if macro OCCT_HANDLE_NOCAST is used, see below.

To resolve this ambiguity, change your code so that argument type should correspond exactly to the function signa-
ture. In some cases this can be done by using the relevant type for the corresponding variable, like in the example
above:

Handle(Geom_Curve) aCurve = new Geom_TrimmedCurve (...);

Other variants consist in assigning the argument to a local variable of the correct type and using the direct cast or
constructor:

(c) Open CASCADE 2018

11.2 Removal of CDL and WOK 22

const Handle(Geom_Curve)& aGCurve (aTrimmedCurve);
func (aGCurve); // OK - argument has exact type
func (static_cast(aCurve)); // OK - direct cast
func (Handle(Geom_Curve)(aCurve)); // OK - temporary handle is constructed

Another possibility consists in defining additional template variant of the overloaded function causing ambiguity, and
using SFINAE to resolve the ambiguity. This technique can be illustrated by the definition of the template variant of
method IGESData_IGESWriter::Send().

Lack of implicit cast to base type

As the cast of a handle to the reference to another handle to the base type has become a user-defined operation,
the conversions that require this cast together with another user-defined cast will not be resolved automatically by
the compiler.

For example:

Handle(Geom_Geometry) aC = GC_MakeLine (p, v); // compiler error

The problem is that the class GC_MakeLine has a user-defined conversion to const Handle(Geom_Trimmed←↩
Curve)&, which is not the same as the type of the local variable aC.

To resolve this, use method Value():

Handle(Geom_Geometry) aC = GC_MakeLine (p, v).Value(); // ok

or use variable of the appropriate type:

Handle(Geom_TrimmedCurve) aC = GC_MakeLine (p, v); // ok

A similar problem appears with GCC compiler, when const handle to derived type is used to construct handle to
base type via assignment (and in some cases in return statement), for instance:

const Handle(Geom_Line) aLine;
Handle(Geom_Curve) c1 = aLine; // GCC error
Handle(Geom_Curve) c2 (aLine); // ok

This problem is specific to GCC and it does not appear if macro OCCT_HANDLE_NOCAST is used, see below.

Incorrect use of STANDARD_TYPE and Handle macros

You might need to clean your code from incorrect use of macros STANDARD_TYPE() and Handle().

1. Explicit definitions of static functions with names generated by macro STANDARD_TYPE(), which are arti-
facts of old implementation of RTTI, should be removed.

Example:

const Handle(Standard_Type)& STANDARD_TYPE(math_GlobOptMin)
{
static Handle(Standard_Type) _atype = new Standard_Type ("math_GlobOptMin", sizeof (math_GlobOptMin));
return _atype;

}

2. Incorrect location of closing parenthesis of Handle() macro that was not detectable in OCCT 6.x will cause a
compiler error and must be corrected.

Example (note misplaced closing parenthesis):

aBSpline = Handle(Geom2d_BSplineCurve::DownCast(BS->Copy()));

Use of class Standard_AncestorIterator

Class Standard_AncestorIterator has been removed; use method Parent() of Standard_Type class to parse the
inheritance chain.

(c) Open CASCADE 2018

11.2 Removal of CDL and WOK 23

Absence of cast to Standard_Transient∗

Handles in OCCT 7.0 do not have the operator of conversion to Standard_Transient∗, which was present in earlier
versions. This is done to prevent possible unintended errors like this:

Handle(Geom_Line) aLine = ...;
Handle(Geom_Surface) aSurf = ...;
...
if (aLine == aSurf) {...} // will cause a compiler error in OCCT 7.0, but not OCCT 6.x

The places where this implicit cast has been used should be corrected manually. The typical situation is when
Handle is passed to stream:

Handle(Geom_Line) aLine = ...;
os << aLine; // in OCCT 6.9.0, resolves to operator << (void*)

Call method get() explicitly to output the address of the Handle.

Method DownCast for non-base types

Method DownCast() in OCCT 7.0 is made templated; if its argument is not a base class, "deprecated" compiler
warning is generated. This is done to prevent possible unintended errors like this:

Handle(Geom_Surface) aSurf = ;
Handle(Geom_Line) aLine =

Handle(Geom_Line)::DownCast (aSurf); // will cause a compiler warning in OCCT 7.0, but not OCCT 6.x

The places where this cast has been used should be corrected manually.

If down casting is used in a template context where the argument can have the same or unrelated type so that
DownCast() may be not available in all cases, use C++ dynamic_cast<> instead, e.g.:

template <class T>
bool CheckLine (const Handle(T) theArg)
{

Handle(Geom_Line) aLine = dynamic_cast<Geom_Line> (theArg.get());
...

}

11.2.3 Possible runtime problems

Here is the list of known possible problems at run time after the upgrade to OCCT 7.0.

References to temporary objects

In previous versions, the compiler was able to detect the situation when a local variable of a "reference to a Handle"
type is initialized by temporary object, and ensured that lifetime of that object is longer than that of the variable. In
OCCT 7.0 with default options, it will not work if types of the temporary object and variable are different (due to
involvement of user-defined type cast), thus such temporary object will be destroyed immediately.

This problem does not appear if macro OCCT_HANDLE_NOCAST is used during compilation, see below.

Example:

// note that DownCast() returns new temporary object!
const Handle(Geom_BoundedCurve)& aBC =
Handle(Geom_TrimmedCurve)::DownCast(aCurve);
aBC->Transform (T); // access violation in OCCT 7.0

11.2.4 Option to avoid cast of handle to reference to base type

In OCCT 6.x and earlier versions the handle classes formed a hierarchy echoing the hierarchy of the corresponding
object classes . This automatically enabled the possibility to use the handle to a derived class in all contexts where
the handle to a base class was needed, e.g. to pass it in a function by reference without copying:

(c) Open CASCADE 2018

11.2 Removal of CDL and WOK 24

Standard_Boolean GetCurve (Handle(Geom_Curve)& theCurve);
....
Handle(Geom_Line) aLine;
if (GetCurve (aLine)) {

// use aLine, unsafe
}

This feature was used in multiple places in OCCT and dependent projects. However it is potentially unsafe: in
the above example no checks are done at compile time or at run time to ensure that the type assigned to the
argument handle is compatible with the type of the handle passed as argument. If an object of incompatible type
(e.g. Geom_Circle) is assigned to theCurve, the behavior will be unpredictable.

For compatibility with the existing code, OCCT 7.0 keeps this possibility by default, providing operators of type cast
to the handle to a base type. However, this feature is unsafe and in specific situations it may cause compile-time or
run-time errors as described above.

To provide a safer behavior, this feature can be disabled by a compile-time macro OCCT_HANDLE_NOCAST.
When it is used, constructors and assignment operators are defined (instead of type cast operators) to convert
handles to a derived type into handles to a base type. This implies creation of temporary objects and hence may
be more expensive at run time in some circumstances, however this way is more standard, safer, and in general
recommended.

The code that relies on the possibility of casting to base should be amended to always use the handle of argument
type in function call and to use DownCast() to safely convert the result to the desired type. For instance, the code
from the example below can be changed as follows:

Handle(Geom_Line) aLine;
Handle(Geom_Curve) aCurve;
if (GetCurve (aCure) && !(aLine = Handle(Geom_Line)::DownCast (aCurve)).IsNull()) {

// use aLine safely
}

11.2.5 Preserving compatibility with OCCT 6.x

If you like to preserve the compatibility of your application code with OCCT versions 6.x even after the upgrade to
7.0, consider the following suggestions:

1. If your code used sequences of macros IMPLEMENT_STANDARD_... generated by WOK, replace them by
single macro IMPLEMENT_STANDARD_RTTIEXT

2. When running automatic upgrade tool, add option -compat.

3. Define macros DEFINE_STANDARD_RTTIEXT and DEFINE_STANDARD_RTTI_INLINE when building with
previous versions of OCCT, resolving to DEFINE_STANDARD_RTTI with single argument

Example:

#if OCC_VERSION_HEX < 0x070000
#define DEFINE_STANDARD_RTTIEXT(C1,C2) DEFINE_STANDARD_RTTI(C1)
#define DEFINE_STANDARD_RTTI_INLINE(C1,C2) DEFINE_STANDARD_RTTI(C1)

#endif

11.2.6 Applications based on CDL and WOK

If your application is essentially based on CDL, and you need to upgrade it to OCCT 7.0, you will very likely need
to convert your application code to non-CDL form. This is a non-trivial effort; the required actions would depend
strongly on the structure of the code and used CDL features.

The upgrade script and sources of a specialized WOK version used for OCCT code upgrade can be found in WOK
Git repository in branch CR0_700_2.

Contact us if you need more help.

(c) Open CASCADE 2018

http://git.dev.opencascade.org/gitweb/?p=occt-wok.git;a=log;h=refs/heads/CR0_700_2
http://www.opencascade.com/contact/

11.3 Separation of BSpline cache 25

11.3 Separation of BSpline cache

Implementation of NURBS curves and surfaces has been revised: the cache of polynomial coefficients, which is
used to accelerate the calculation of values of a B-spline, has been separated from data objects Geom2d_B←↩
SplineCurve, Geom_BSplineCurve and Geom_BSplineSurface into the dedicated classes BSplCLib_Cache and
BSplSLib_Cache.

The benefits of this change are:

• Reduced memory footprint of OCCT shapes (up to 20% on some cases)

• Possibility to evaluate the same B-Spline concurrently in parallel threads without data races and mutex locks

The drawback is that direct evaluation of B-Splines using methods of curves and surfaces becomes slower due to
the absence of cache. The slow-down can be avoided by using adaptor classes Geom2dAdaptor_Curve, Geom←↩
Adaptor_Curve and GeomAdaptor_Surface, which now use cache when the curve or surface is a B-spline.

OCCT algorithms have been changed to use adaptors for B-spline calculations instead of direct methods for curves
and surfaces. The same changes (use of adaptors instead of direct call to curve and surface methods) should be
implemented in relevant places in the applications based on OCCT to get the maximum performance.

11.4 Structural result of Boolean operations

The result of Boolean operations became structured according to the structure of the input shapes. Therefore it
may impact old applications that always iterate on direct children of the result compound assuming to obtain solids
as iteration items, regardless of the structure of the input shapes. In order to get always solids as iteration items it
is recommended to use TopExp_Explorer instead of TopoDS_Iterator.

11.5 BRepExtrema_ExtCC finds one solution only

Extrema computation between non-analytical curves in shape-shape distance calculation algorithm has been
changed in order to return only one solution. So, if e.g. two edges are created on parallel b-spline curves the
algorithm BRepExtrema_DistShapeShape will return only one solution instead of enormous number of solutions.
There is no way to get algorithm working in old manner.

11.6 Removal of SortTools package

Package SortTools has been removed. The code that used the tools provided by that package should be corrected
manually. The recommended approach is to use sorting algorithms provided by STL.

For instance:

#include <SortTools_StraightInsertionSortOfReal.hxx>
#include <SortTools_ShellSortOfReal.hxx>
#include <TCollection_CompareOfReal.hxx>
...
TCollection_Array1OfReal aValues = ...;
...
TCollection_CompareOfReal aCompReal;
SortTools_StraightInsertionSortOfReal::Sort(aValues, aCompReal);

can be replaced by:

#include <algorithm>
...
TCollection_Array1OfReal aValues = ...;
...
std::stable_sort (aValues.begin(), aValues.end());

(c) Open CASCADE 2018

11.7 On-screen objects and ColorScale 26

11.7 On-screen objects and ColorScale

The old mechanism for rendering Underlay and Overlay on-screen 2D objects based on Visual3d_Layer and im-
mediate drawing model (uncached and thus slow) has been removed. Classes Aspect_Clayer2d, OpenGl_←↩
GraphicDriver_Layer, Visual3d_Layer, Visual3d_LayerItem, V3d_LayerMgr and V3d_LayerMgrPointer have been
deleted. The following auxiliary definition have been removed as well: Aspect_TypeOfPrimitive, Aspect_Type←↩
OfLayer, Aspect_TypeOfEdge, Aspect_TypeOfDrawMode, Aspect_TypeOfConstraint, Aspect_DriverDefinitionError,
Aspect_BadAccess.

General AIS interactive objects with transformation persistence flag Graphic3d_TMF_2d can be used as a replace-
ment of Visual3d_LayerItem. The anchor point specified for transformation persistence defines the window corner
of (or center in case of (0, 0) point). To keep on-screen 2D objects on top of the main screen, they can be assigned
to the appropriate Z-layer. Predefined Z-layers Graphic3d_ZLayerId_TopOSD and Graphic3d_ZLayerId_BotOSD
are intended to replace Underlay and Overlay layers within the old API.

ColorScale object previously implemented using Visual3d_LayerItem has been moved to a new class AIS_Color←↩
Scale, with width and height specified explicitly. The property of V3d_View storing the global ColorScale object
has been removed with associated methods V3d_View::ColorScaleDisplay(), V3d_View::ColorScaleErase(), V3d←↩
_View::ColorScaleIsDisplayed() and V3d_View::ColorScale() as well as the classes V3d_ColorScale, V3d_Color←↩
ScaleLayerItem and Aspect_ColorScale. Here is an example of creating ColorScale using the updated API:

Handle(AIS_ColorScale) aCS = new AIS_ColorScale();
// configuring
Standard_Integer aWidth, aHeight;
aView->Window()->Size (aWidth, aHeight);
aCS->SetSize (aWidth, aHeight);
aCS->SetRange (0.0, 10.0);
aCS->SetNumberOfIntervals (10);
// displaying
aCS->SetZLayer (Graphic3d_ZLayerId_TopOSD);
aCS->SetTransformPersistence (Graphic3d_TMF_2d, gp_Pnt (-1,-1,0));
aCS->SetToUpdate();
theContextAIS->Display (aCS);

To see how 2d objects are implemented in OCCT you can call Draw commands vcolorscale, vlayerline or vdrawtext
(with -2d option). Draw command vcolorscale now requires the name of ColorScale object as argument. To display
this object use command vdisplay. For example:

pload VISUALIZATION
vinit
vcolorscale cs -demo
pload MODELING
box b 100 100 100
vdisplay b
vsetdispmode 1
vfit
vlayerline 0 300 300 300 10
vdrawtext t "2D-TEXT" -2d -pos 0 150 0 -color red

Here is a small example in C++ illustrating how to display a custom AIS object in 2d:

Handle(AIS_InteractiveContext) aContext = ...;
Handle(AIS_InteractiveObject) anObj =...; // create an AIS object
anObj->SetZLayer(Graphic3d_ZLayerId_TopOSD); // display object in overlay
anObj->SetTransformPersistence (Graphic3d_TMF_2d, gp_Pnt (-1,-1,0)); // set 2d flag, coordinate origin is

set to down-left corner
aContext->Display (anObj); // display the object

11.8 UserDraw and Visual3d

Visual3d package

Package Visual3d implementing the intermediate layer between high-level V3d classes and low-level OpenGl class-
es for views and graphic structures management has been dropped.

The OpenGl_View inherits from the new class Graphic3d_CView. Graphic3d_CView is an interface class that
declares abstract methods for managing displayed structures, display properties and a base layer code that imple-
ments computation and management of HLR (or more broadly speaking view-depended) structures.

(c) Open CASCADE 2018

11.8 UserDraw and Visual3d 27

In the new implementation it takes place of the eliminated Visual3d_View. As before the instance of Graphic3d_C←↩
View is still completely managed by V3d_View classes. It can be accessed through V3d_View interface but normally
it should not be required as all its methods are completely wrapped.

In more details, a concrete specialization of Graphic3d_CView is created and returned by the graphical driver on
request. Right after the creation the views are directly used for setting rendering properties and adding graphical
structures to be displayed.

The rendering of graphics is possible after mapping a window and activating the view. The direct setting of properties
obsoletes the use of intermediate structures with display parameter like Visual3d_ContextView, etc. This means
that the whole package Visual3d becomes redundant.

The functionality previously provided by Visual3d package has been redesigned in the following way :

• The management of display of structures has been moved from Visual3d_ViewManager into Graphic3d_←↩
StructureManager.

• The class Visual3d_View has been removed. The management of computed structures has been moved into
the base layer of Graphi3d_CView.

• All intermediate structures for storing view parameters, e.g. Visual3d_ContextView, have been removed. The
settings are now kept by instances of Graphic3d_CView.

• The intermediate class Visual3d_Light has been removed. All light properties are stored in Graphic3d_CLight
structure, which is directly accessed by instances of V3d_Light classes.

• All necessary enumerations have been moved into Graphic3d package.

Custom OpenGL rendering and UserDraw

Old APIs based on global callback functions for creating UserDraw objects and for performing custom OpenGL
rendering within the view have been dropped. UserDraw callbacks are no more required since OpenGl_Group now
inherits Graphic3d_Group and thus can be accessed directly from AIS_InteractiveObject:

//! Class implementing custom OpenGL element.
class UserDrawElement : public OpenGl_Element {};

//! Implementation of virtual method AIS_InteractiveObject::Compute().
void UserDrawObject::Compute (const Handle(PrsMgr_PresentationManager3d)& thePrsMgr,

const Handle(Prs3d_Presentation)& thePrs,
const Standard_Integer theMode)

{
Graphic3d_Vec4 aBndMin (myCoords[0], myCoords[1], myCoords[2], 1.0f);
Graphic3d_Vec4 aBndMax (myCoords[3], myCoords[4], myCoords[5], 1.0f);

// casting to OpenGl_Group should be always true as far as application uses OpenGl_GraphicDriver for
rendering

Handle(OpenGl_Group) aGroup = Handle(OpenGl_Group)::DownCast (thePrs->NewGroup());
aGroup->SetMinMaxValues (aBndMin.x(), aBndMin.y(), aBndMin.z(),

aBndMax.x(), aBndMax.y(), aBndMax.z());
UserDrawElement* anElem = new UserDrawElement (this);
aGroup->AddElement(anElem);

// invalidate bounding box of the scene
thePrsMgr->StructureManager()->Update();

}

To perform a custom OpenGL code within the view, it is necessary to inherit from class OpenGl_View. See the
following code sample:

//! Custom view.
class UserView : public OpenGl_View
{
public:

//! Override rendering into the view.
virtual void render (Graphic3d_Camera::Projection theProjection,

OpenGl_FrameBuffer* theReadDrawFbo,
const Standard_Boolean theToDrawImmediate)

{
OpenGl_View::render (theProjection, theReadDrawFbo, theToDrawImmediate);
if (theToDrawImmediate)
{

(c) Open CASCADE 2018

11.9 Deprecation of Local Context 28

return;
}

// perform custom drawing
const Handle(OpenGl_Context)& aCtx = myWorkspace->GetGlContext();
GLfloat aVerts[3] = { 0.0f, 0,0f, 0,0f };
aCtx->core20->glEnableClientState(GL_VERTEX_ARRAY);
aCtx->core20->glVertexPointer(3, GL_FLOAT, 0, aVerts);
aCtx->core20->glDrawArrays(GL_POINTS, 0, 1);
aCtx->core20->glDisableClientState(GL_VERTEX_ARRAY);

}

};

//! Custom driver for creating UserView.
class UserDriver : public OpenGl_GraphicDriver
{
public:

//! Create instance of own view.
virtual Handle(Graphic3d_CView) CreateView (const Handle(Graphic3d_StructureManager)& theMgr)

Standard_OVERRIDE
{
Handle(UserView) aView = new UserView (theMgr, this, myCaps, myDeviceLostFlag, &myStateCounter);
myMapOfView.Add (aView);
for (TColStd_SequenceOfInteger::Iterator aLayerIt (myLayerSeq); aLayerIt.More(); aLayerIt.Next())
{

const Graphic3d_ZLayerId aLayerID = aLayerIt.Value();
const Graphic3d_ZLayerSettings& aSettings = myMapOfZLayerSettings.Find (aLayerID);
aView->AddZLayer (aLayerID);
aView->SetZLayerSettings (aLayerID, aSettings);

}
return aView;

}
};

11.9 Deprecation of Local Context

The conception of Local Context has been deprecated. The related classes, e.g. AIS_LocalContext, and methods
(AIS_InteractiveContext::OpenLocalContext() and others) will be removed in a future OCCT release.

The main functionality provided by Local Context - selection of object subparts - can be now used within Neutral
Point without opening any Local Context.

The property SelectionMode() has been removed from the class AIS_InteractiveObject. This property contradicts
to selection logic, since it is allowed to activate several Selection modes at once. Therefore keeping one selection
mode as object field makes no sense. Applications that used this method should implement selection mode caching
at application level, if it is necessary for some reason.

11.10 Separation of visualization part from TKCAF

Visualization CAF attributes have been moved into a new toolkit TKVCAF. If your application uses the classes from
TPrsStd package then add link to TKVCAF library.

Version numbers of BinOCAF and XmlOCAF formats are incremented; new files cannot be read by earlier versions
of OCCT.

Before loading the OCAF files saved by previous versions and containing TPrsStd_AISPresentation attribute it
is necessary to define the environment variable CSF_MIGRATION_TYPES, pointing to file src/StdResources/←↩
MigrationSheet.txt. When using documents loaded from a file, make sure to call method TPrsStd_AISViewer::New()
prior to accessing TPrsStd_AISPresentation attributes in this document as that method creates them.

11.11 Correction of interpretation of Euler angles in gp_Quaternion

Conversion of gp_Quaternion to and from intrinsic Tait-Bryan angles (including gp_YawPitchRoll) is fixed.

Before that fix the sequence of rotation axes was opposite to the intended; e.g. gp_YawPitchRoll (equivalent to
gp_Intrinsic_ZYX) actually defined intrinsic rotations around X, then Y, then Z. Now the rotations are made in the
correct order.

(c) Open CASCADE 2018

11.12 Zoom Persistent Selection 29

The applications that use gp_Quaternion to convert Yaw-Pitch-Roll angles (or other intrinsic Tait-Bryan sequences)
may need to be updated to take this change into account.

11.12 Zoom Persistent Selection

Zoom persistent selection introduces a new structure Graphic3d_TransformPers to transform persistence methods
and parameters and a new class Graphic3d_WorldViewProjState to refer to the camera transformation state. You
might need to update your code to deal with the new classes if you were using the related features. Please, keep in
mind the following:

• Graphic3d_Camera::ModelViewState has been renamed to Graphic3d_Camera::WorldViewState.

• Transformation matrix utilities from OpenGl_Utils namespace have been moved to Graphic3d_TransformUtils
and Graphic3d_TransformUtils.hxx header respectively.

• Matrix stack utilities from OpenGl_Utils namespace have been moved to OpenGl_MatrixStack class and
OpenGl_MatrixStack.hxx header respectively.

• OpenGl_View methods Begin/EndTransformPersistence have been removed. Please, use Graphic3d_←↩
TransformPers::Apply() instead to apply persistence to perspective and world-view projection matrices.

11.13 Texture mapping of objects

Textured objects now have the priority over the environment mapping.

Redundant enumerations V3d_TypeOfSurface and Graphic3d_TypeOfSurface, class OpenGl_SurfaceDetailState,
the corresponding methods from Graphic3d_CView, OpenGl_ShaderManager, OpenGl_View, V3d_View and V3d←↩
_Viewer have been deleted. Draw command VSetTextureMode has been deleted.

11.14 Shape presentation builders

Presentation tools for building Wireframe presentation have been refactored to eliminate duplicated code and inter-
faces. Therefore, the following classes have been modified:

• StdPrs_WFDeflectionShape and Prs3d_WFShape have been removed. StdPrs_WFShape should be used
instead.

• StdPrs_ToolShadedShape has been renamed to StdPrs_ToolTriangulatedShape.

(c) Open CASCADE 2018

12 Upgrade to OCCT 7.1.0 30

12 Upgrade to OCCT 7.1.0

12.1 Presentation attributes

This section should be considered if application defines custom presentations, i.e. inherited from AIS_Interactive←↩
Object. The previous versions of OCCT have three levels for defining presentation properties (e.g. colors, materials,
etc.):

1. For the entire structure - Graphic3d_Structure / Prs3d_Presentation.

2. For a specific group of primitives - Graphic3d_Group::SetGroupPrimitivesAspect() overriding structure as-
pects.

3. For a specific primitive array within the graphic group - Graphic3d_Group::SetPrimitivesAspect().

The structure level has de facto not been used for a long time since OCCT presentations always define aspects
at the graphic group level (overriding any structure aspects). Within this OCCT release, structure level of aspects
has been completely removed. In most cases the application code should just remove missing methods. In those
rare cases, when this functionality was intentionally used, the application should explicitly define aspects to the
appropriate graphic groups.

Note that defining several different aspects within the same graphic group should also be avoided in the application
code since it is a deprecated functionality which can be removed in further releases. Graphic3d_Group::SetGroup←↩
PrimitivesAspect() should be the main method defining presentation attributes.

The implementation of Graphic3d_Group::SetGroupPrimitivesAspect() has been changed from copying aspect val-
ues to keeping the passed object. Although it was not documented, previously it was possible to modify a single
aspect instance, like Graphic3d_AspectFillArea3d and set it to multiple groups. Now such code would produce an
unexpected result and therefore should be updated to create the dedicated aspect instance.

12.2 Typedefs

The following type definitions in OCCT has been modified to use C++11 types:

• Standard_Boolean is now bool (previously unsigned int).

• Standard_ExtCharacter is now char16_t (previously short).

• Standard_ExtString; is now const char16_t (previously const short).

• Standard_Utf16Char is now char16_t (previously uint16_t for compatibility with old compilers).

• Standard_Utf32Char is now char32_t (previously uint32_t for compatibility with old compilers).

For most applications this change should be transparent on the level of source code. Binary compatibility is not
maintained, as bool has a different size in comparison with unsigned int.

12.3 Programmable Pipeline

Fixed-function pipeline has been already deprecated since OCCT 7.0.0. Release 7.1.0 disables this functionality by
default in favor of Programmable Pipeline (based on GLSL programs).

Method V3d_View::Export(), based on gl2ps library, requires fixed pipeline and will return error if used with default
settings. Applications should explicitly enable fixed pipeline by setting OpenGl_Caps::ffpEnable flag to TRUE within
OpenGl_GraphicDriver::ChangeOptions() before creating the viewer to use V3d_View::Export(). This method is
declared as deprecated and will be removed in one of the the next OCCT releases. The recommended way to
generate a vector image of a 3D model or scene is to use an application-level solution independent from OpenGL.

(c) Open CASCADE 2018

12.4 Transformation persistence 31

12.4 Transformation persistence

The behavior of transformation persistence flags Graphic3d_TMF_ZoomPers and Graphic3d_TMF_TriedronPers
has been changed for consistency with a textured fixed-size 2D text. An object with these flags is considered as
defined in pixel units, and the presentation is no more scaled depending on the view height. The applications that
need to scale such objects depending on viewport size should update them manually.

Flags Graphic3d_TMF_PanPers and Graphic3d_TMF_FullPers have been removed. Graphic3d_TMF_TriedronPers
or Graphic3d_TMF_2d can be used instead depending on the context.

Graphic3d_TransModeFlags is not an integer bitmask anymore - enumeration values should be specified instead.
Several transformation persistence methods in PrsMgr_PresentableObject have been marked deprecated. Transfor-
mation persistence should be defined using Graphic3d_TransformPers constructor directly and passed by a handle,
not value.

12.5 Dynamic highlight and selection properties

Release 7.1.0 introduces Graphic3d_HighlightStyle - an entity that allows flexible customization of highlighting pa-
rameters (such as highlighting method, color, and transparency). Therefore, the signatures of the following methods
related to highlighting:

• AIS_InteractiveContext::Hilight();

• AIS_InteractiveContext::HilightWithColor();

• PrsMgr_PresentationManager::Color();

• SelectMgr_EntityOwner::HilightWithColor(); have been changed to receive Graphic3d_HighlightStyle instead
of Quantity_Color.

Method AIS_InteractiveContext::Hilight is now deprecated and highlights the interactive object with selection style.

A group of methods AIS_InteractiveContext::IsHilighted has changed its behavior - now they only check highlight
flags of the object or the owner in the global status. If the highlight color is required on the application level, it is
necessary to use overloaded methods AIS_InteractiveContext::HighlightStyle for the owner and the object.

The following methods have been replaced in AIS_InteractiveContext class:

• HilightColor and SetHilightColor by HighlightStyle and SetHighlightStyle;

• SelectionColor setter and getter by SelectionStyle and SetSelectionStyle.

The API of Prs3d_Drawer has been extended to allow setting up styles for both dynamic selection and highlighting.
Therefore, it is possible to change the highlight style of a particular object on the application level via SelectMgr_←↩
SelectableObject::HilightAttributes() and process it in the entity owner.

12.6 Correction in TObj_Model class

Methods TObj_Model::SaveAs and TObj_Model::Load now receive TCollection_ExtendedString filename argu-
ments instead of char∗. UTF-16 encoding can be used to pass file names containing Unicode symbols.

12.7 Redundant environment variables

The following environment variables have become redundant:

• CSF_UnitsLexicon and CSF_UnitsDefinition are no more used. Units definition (UnitsAPI/Lexi_Expr.dat and
UnitsAPI/Units.dat) is now embedded into source code.

(c) Open CASCADE 2018

12.8 Removed features 32

• CSF_XSMessage and CSF_XHMessage are now optional. English messages (XSMessage/∗XSTEP.us∗ and
SHMessage/∗SHAPE.us∗) are now embedded into source code and automatically loaded when environment
variables are not set.

• CSF_ShadersDirectory is not required any more, though it still can be used to load custom shaders. Manda-
tory GLSL resources are now embedded into source code.

• CSF_PluginDefaults and other variables pointing to OCAF plugin resources (CSF_StandardDefaults, CS←↩
F_XCAFDefaults, CSF_StandardLiteDefaults and CSF_XmlOcafResource) are not necessary if method T←↩
DocStd_Application::DefineFormat() is used to enable persistence of OCAF documents.

Other environment variables still can be used to customize behavior of relevant algorithms but are not necessary
any more (all required resources are embedded).

12.8 Removed features

The following obsolete features have been removed:

• Anti-aliasing API V3d_View::SetAntialiasingOn(). This method was intended to activate deprecated Open←↩
GL functionality GL_POLYGON_SMOOTH, GL_LINE_SMOOTH and GL_POINT_SMOOTH. Instead of the
old API, the application should request MSAA buffers for anti-aliasing by assigning Graphic3d_Rendering←↩
Params::NbMsaaSamples property of the structure returned by V3d_View::ChangeRenderingParams().

• Prs3d_Drawer::ShadingAspectGlobal() flag has been removed as not used. The corresponding calls can be
removed safely from the application code.

• The methods managing ZClipping planes and ZCueing: V3d_View::SetZClippingType(), V3d_View::SetZ←↩
CueingOn(), etc. have been removed. ZClipping planes can be replaced by general-purpose clipping planes
(the application should update plane definition manually).

• The 3D viewer printing API V3d_View::Print() has been removed. This functionality was available on Windows
platforms only. The applications should use the general image dump API V3d_View::ToPixMap() and manage
printing using a platform-specific API at the application level. Text resolution can be managed by rendering
parameter Graphic3d_RenderingParams::Resolution, returned by V3d_View::ChangeRenderingParams().

• Methods PrsMgr_PresentationManager::BoundBox, PrsMgr_PresentationManager::Hilight and SelectMgr_←↩
EntityOwner::Hilight have been removed as not used. The corresponding method in custom implementations
of SelectMgr_EntityOwner can be removed safely. PrsMgr_PresentationManager::Color with the correspond-
ing style must be used instead.

• Class NCollection_QuickSort has been removed. The code that used the tools provided by that class should
be corrected manually. The recommended approach is to use sorting algorithms provided by STL (std::sort).
See also Removal of SortTools package above.

• Package Dico. The code that used the tools provided by that package should be corrected manually. The
recommended approach is to use NCollection_DataMap and NCollection_IndexedDataMap classes.

12.9 Other changes

The following classes have been changed:

• BVH_Sorter class has become abstract. The list of arguments of both Perform methods has been changed
and the methods became pure virtual.

• Extrema_FuncExtPS has been renamed to Extrema_FuncPSNorm.

• The default constructor and the constructor taking a point and a surface have been removed from class
Extrema_GenLocateExtPS. Now the only constructor takes the surface and optional tolerances in U and V
directions. The new method Perform takes the point with the start solution and processes it. The class has
become not assignable and not copy-constructable.

(c) Open CASCADE 2018

12.9 Other changes 33

• Constructors with arguments ∗(const gp_Ax22d& D, const gp_Pnt2d& F)∗ have been removed from GCE2d←↩
_MakeParabola, gce_MakeParab2d and gp_Parab2d. The objects created with some constructors of class
gp_Parab2d may differ from the previous version (see the comments in gp_Parab2d.hxx). The result returned
by gp_Parab2d::Directrix() method has an opposite direction in comparison with the previous OCCT versions.

• BRepTools_Modifier class now has two modes of work. They are defined by the boolean parameter Mutable←↩
Input, which is turned off by default. This means that the algorithm always makes a copy of a sub-shape (e.g.
vertex) if its tolerance is to be increased in the output shape. The old mode corresponds to MutableInput
turned on. This change may impact an application if it implements a class derived from BRepTools_Modifier.

• The second parameter theIsOuterWire of method ShapeAnalysis_Wire::CheckSmallArea has been removed.

• In class GeomPlate_CurveConstraint, two constructors taking boundary curves of different types have been
replaced with one constructor taking the curve of an abstract type.

• The last optional argument RemoveInvalidFaces has been removed from the constructor of class BRep←↩
Offset_MakeOffset and method Initialize.

• The public method BOPDS_DS::VerticesOnIn has been renamed into SubShapesOnIn and the new output
parameter theCommonPB has been added.

(c) Open CASCADE 2018

13 Upgrade to OCCT 7.2.0 34

13 Upgrade to OCCT 7.2.0

13.1 Removed features

The following obsolete features have been removed:

• AIS_InteractiveContext::PreSelectionColor(), DefaultColor(), WasCurrentTouched(), ZDetection(). These
properties were unused, and therefore application should remove occurrences of these methods.

• AIS_InteractiveObject::SelectionPriority(). These property was not implemented.

• The class LocOpe_HBuilder has been removed as obsolete.

• The package TestTopOpe has been removed;

• The package TestTopOpeDraw has been removed;

• The package TestTopOpeTools has been removed.

• The packages QANewModTopOpe, QANewBRepNaming and QANewDBRepNaming have been removed as
containing obsolete features.

• The following methods of the IntPolyh_Triangle class have been removed as unused:

– CheckCommonEdge

– SetEdgeandOrientation

– MultipleMiddleRefinement2.

• The method IntPolyh_Triangle::TriangleDeflection has been renamed to IntPolyh_Triangle::Compute←↩
Deflection.

• The following methods of the IntPolyh_MaillageAffinage class have been removed as unused:

– LinkEdges2Triangles;

– TriangleEdgeContact2;

– StartingPointsResearch2;

– NextStartingPointsResearch2;

– TriangleComparePSP;

– StartPointsCalcul.

• The method PerformAdvanced of the ShapeConstruct_ProjectCurveOnSurface class has been removed as
unused.

• The method Perform of the ShapeConstruct_ProjectCurveOnSurface class is modified:

– input arguments continuity, maxdeg, nbinterval have been removed as unused;

– input arguments TolFirst, TolLast have been added at the end of arguments' list.

• Typedefs Quantity_Factor, Quantity_Parameter, Quantity_Ratio, Quantity_Coefficient, Quantity_PlaneAngle,
Quantity_Length, V3d_Parameter and V3d_Coordinate have been removed; Standard_Real should be used
instead.

13.2 Corrections in BRepOffset API

In classes BRepTools_ReShape and ShapeBuild_ReShape, the possibility to process shapes different only by
orientation in different ways has been removed. Thus methods Remove() and Replace() do not have any more the
last argument 'oriented'; they work always as if Standard_False was passed before (default behavior). Methods
ModeConsiderLo() and Apply() with three arguments have been removed.

(c) Open CASCADE 2018

13.3 Corrections in BRepOffset API 35

13.3 Corrections in BRepOffset API

Class BRepOffsetAPI_MakeOffsetShape:

• BRepOffsetAPI_MakeOffsetShape::BRepOffsetAPI_MakeOffsetShape() - constructor with parameters has
been deleted.

• BRepOffsetAPI_MakeOffsetShape::PerformByJoin() - method has been added. This method is old algorithm
behaviour.

The code below shows new calling procedure:

BRepOffsetAPI_MakeOffsetShape OffsetMaker;
OffsetMaker.PerformByJoin(Shape, OffsetValue, Tolerance);
NewShape = OffsetMaker.Shape();

Class BRepOffsetAPI_MakeThickSolid:

• BRepOffsetAPI_MakeThickSolid::BRepOffsetAPI_MakeThickSolid() - constructor with parameters has been
deleted.

• BRepOffsetAPI_MakeThickSolid::MakeThickSolidByJoin() - method has been added. This method is old
algorithm behaviour.

The code below shows new calling procedure:

BRepOffsetAPI_MakeThickSolid BodyMaker;
BodyMaker.MakeThickSolidByJoin(myBody, facesToRemove, -myThickness / 50, 1.e-3);
myBody = BodyMaker.Shape();

13.4 Highlight style

Management of highlight attributes has been revised and might require modifications from application side:

• New class Graphic3d_PresentationAttributes defining basic presentation attributes has been introduced. It's
definition includes properties previously defined by class Graphic3d_HighlightStyle (Color, Transparency),
and new properties (Display mode, ZLayer, optional FillArea aspect).

• Class Prs3d_Drawer now inherits class Graphic3d_PresentationAttributes. So that overall presentation at-
tributes are now split into two parts - Basic attributes and Detailed attributes.

• Class Graphic3d_HighlightStyle has been dropped. It is now defined as a typedef to Prs3d_Drawer. There-
fore, highlight style now also includes not only Basic presentation attributes, but also Detailed attributes which
can be used by custom presentation builders.

• Highlighting style defined by class Graphic3d_PresentationAttributes now provides more options:

– Graphic3d_PresentationAttributes::BasicFillAreaAspect() property providing complete Material defini-
tion. This option, when defined, can be used instead of the pair Object Material + Highlight Color.

– Graphic3d_PresentationAttributes::ZLayer() property specifying the Layer where highlighted presenta-
tion should be shown. This property can be set to Graphic3d_ZLayerId_UNKNOWN, which means that
ZLayer of main presentation should be used instead.

– Graphic3d_PresentationAttributes::DisplayMode() property specifying Display Mode for highlight pre-
sentation.

• Since Highlight and Selection styles within AIS_InteractiveContext are now defined by Prs3d_Drawer inher-
iting from Graphic3d_PresentationAttributes, it is now possible to customize default highlight attributes like
Display Mode and ZLayer, which previously could be defined only on Object level.

(c) Open CASCADE 2018

13.5 Elimination of implicit 3D Viewer updates 36

• Properties Prs3d_Drawer::HighlightStyle() and Prs3d_Drawer::SelectionStyle() have been removed. Instead,
AIS_InteractiveObject now defines DynamicHilightAttributes() for dynamic highlighting in addition to Hilight←↩
Attributes() used for highlighting in selected state. Note that AIS_InteractiveObject::HilightAttributes() and
AIS_InteractiveObject::DynamicHilightAttributes() override highlighting properties for both - entire object and
for part coming from decomposition. This includes Z-layer settings, which will be the same when overriding
properties through AIS_InteractiveObject, while AIS_InteractiveContext::HighlightStyle() allows customizing
properties for local and global selection independently (with Graphic3d_ZLayerId_Top used for dynamic high-
lighting of entire object and Graphic3d_ZLayerId_Topmost for dynamic highlighting of object part by default).

• The following protected fields have been removed from class AIS_InteractiveObject:

– myOwnColor, replaced by myDrawer->Color()

– myTransparency, replaced by myDrawer->Transparency()

– myZLayer, replaced by myDrawer->ZLayer()

• The method PrsMgr_PresentationManager::Unhighlight() taking Display Mode as an argument has been
marked deprecated. Implementation now performs unhighlighting of all highlighted presentation mode.

• The methods taking/returning Quantity_NameOfColor (predefined list of colors) and duplicating methods op-
erating with Quantity_Color (definition of arbitrary RGB color) in AIS have been removed. Quantity_Color
should be now used instead.

13.5 Elimination of implicit 3D Viewer updates

Most AIS_InteractiveContext methods are defined with a flag to update viewer immediatly or not. Within previous
version of OCCT, this argument had default value TRUE. While immediate viewer updates are useful for beginners
(the result is displayed as soon as possible), this approach is inefficent for batch viewer updates, and having default
value as TRUE leaded to non-intended accidential updates which are difficult to find.

To avoid such issues, the interface has been modified and default value has been removed. Therefore, old appli-
cation code should be updated to set the flag theToUpdateViewer explicitly to desired value (TRUE to preserve old
previous behavior), if it was not already set.

The following AIS_InteractiveContext methods have been changed: Display, Erase, EraseAll, DisplayAll,
EraseSelected, DisplaySelected, ClearPrs, Remove, RemoveAll, Hilight, HilightWithColor, Unhilight, Redisplay,
RecomputePrsOnly, Update, SetDisplayMode, UnsetDisplayMode, SetColor, UnsetColor, SetWidth, Unset←↩
Width, SetMaterial, UnsetMaterial, SetTransparency, UnsetTransparency, SetLocalAttributes, UnsetLocalAttributes,
SetPolygonOffsets, SetTrihedronSize, SetPlaneSize, SetPlaneSize, SetDeviationCoefficient, SetDeviationAngle,
SetAngleAndDeviation, SetHLRDeviationCoefficient, SetHLRDeviationAngle, SetHLRAngleAndDeviation, Set←↩
SelectedAspect, MoveTo, Select, ShiftSelect, SetSelected, UpdateSelected, AddOrRemoveSelected, Hilight←↩
Selected, UnhilightSelected, ClearSelected, ResetOriginalState, SubIntensityOn, SubIntensityOff, FitSelected,
EraseGlobal, ClearGlobal, ClearGlobalPrs.

In addition, the API for immediate viewer update has been removed from V3d_View and Graphic3d_Structure←↩
Manager classes (enumerations Aspect_TypeOfUpdate and V3d_TypeOfUpdate): V3d::SetUpdateMode(), V3d::←↩
UpdateMode(), Graphic3d_StructureManager::SetUpdateMode(), Graphic3d_StructureManager::UpdateMode().

The argument theUpdateMode has been removed from methods Graphic3d_CView::Display(), Erase(), Update().
Method Graphic3d_CView::Update() does not redraw the view and does not re-compute structures anymore.

The following Grid management methods within class V3d_Viewer do not implicitly redraw the viewer: ActivateGrid,
DeactivateGrid, SetRectangularGridValues, SetCircularGridValues, RectangularGridGraphicValues, CircularGrid←↩
GraphicValues, SetPrivilegedPlane, DisplayPrivilegedPlane.

13.6 Elimination of Quantity_NameOfColor from TKV3d interface classes

The duplicating interface methods accepting Quantity_NameOfColor (in addition to methods accepting Quantity_←↩
Color) of TKV3d toolkit have been removed. In most cases this change should be transparent, however applications
implementing such interface methods should also remove them (compiler will automatically highlight this issue for
methods marked with Standard_OVERRIDE keyword).

(c) Open CASCADE 2018

13.7 Result of Boolean operations on containers 37

13.7 Result of Boolean operations on containers

• The result of Boolean operations on arguments of collection types (WIRE/SHELL/COMPSOLID) is now fil-
tered from duplicating containers.

13.8 Other changes

• MMgt_TShared class definition has been removed - Standard_Transient should be used instead (MMgt_T←↩
Shared is marked as deprecated typedef of Standard_Transient for smooth migration).

• Class GeomPlate_BuildPlateSurface accepts base class Adaptor3d_HCurve (instead of inherited
Adaptor3d_HCurveOnSurface accepted earlier).

• Types GeomPlate_Array1OfHCurveOnSurface and GeomPlate_HArray1OfHCurveOnSurface have been re-
placed with GeomPlate_Array1OfHCurve and GeomPlate_HArray1OfHCurve correspondingly (accept base
class Adaptor3d_HCurve instead of Adaptor3d_HCurveOnSurface).

• Enumeration Image_PixMap::ImgFormat, previously declared as nested enumeration within class Image_←↩
PixMap, has been moved to global namespace as Image_Format following OCCT coding rules. The enumer-
ation values have suffix Image_Format_ and preserve previous name scheme for easy renaming of old values
- e.g. Image_PixMap::ImgGray become Image_Format_Gray. Old definitions are preserved as depreacated
aliases to the new ones;

• Methods Image_PixMap::PixelColor() and Image_PixMap::SetPixelColor() now take/return Quantity_Color←↩
RGBA instead of Quantity_Color/NCollection_Vec4.

• The method BOPAlgo_Builder::Origins() returns BOPCol_DataMapOfShapeListOfShape instead of BOP←↩
Col_DataMapOfShapeShape.

• The methods BOPDS_DS::IsToSort(const Handle(BOPDS_CommonBlock)&, Standard_Integer&) and BO←↩
PDS_DS::SortPaveBlocks(const Handle(BOPDS_CommonBlock)&) have been removed. The sorting is now
performed during the addition of the Pave Blocks into Common Block.

• The methods BOPAlgo_Tools::MakeBlocks() and BOPAlgo_Tools::MakeBlocksCnx() have been replaced with
the single template method BOPAlgo_Tools::MakeBlocks(). The chains of connected elements are now s-
tored into the list of list instead of data map.

• The methods BOPAlgo_Tools::FillMap() have been replaced with the single template method BOPAlgo_←↩
Tools::FillMap().

• Package BVH now uses opencascade::handle instead of NCollection_Handle (for classes BVH_Properties,
BVH_Builder, BVH_Tree, BVH_Object). Application code using BVH package directly should be updated
accordingly.

• AIS_Shape now computes UV texture coordinates for AIS_Shaded presentation in case if texture mapping is
enabled within Shaded Attributes. Therefore, redundant class AIS_TexturedShape is now deprecated - appli-
cations can use AIS_Shape directly (texture mapping should be defined through AIS_Shape::Attributes()).

• Methods for managing active texture within OpenGl_Workspace class (ActiveTexture(), DisableTexture(),
EnableTexture()) have been moved to OpenGl_Context::BindTextures().

13.9 BOP - Pairs of interfering indices

• The classes BOPDS_PassKey and BOPDS_PassKeyBoolean are too excessive and not used any more in
Boolean Operations. To replace them the new BOPDS_Pair class has been implemented. Thus:

– The method BOPDS_DS::Interferences() now returns the BOPDS_MapOfPair;

– The method BOPDS_Iterator::Value() takes now only two parameters - the indices of interfering sub-
shapes.

(c) Open CASCADE 2018

13.10 Removal of the Draw commands based on old Boolean operations 38

13.10 Removal of the Draw commands based on old Boolean operations

• The commands fubl and cubl have been removed. The alternative for these commands are the commands
bfuseblend and bcutblend respectively.

• The command ksection has been removed. The alternative for this command is the command bsection.

13.11 Change of Face/Face intersection in Boolean operations

• Previously, the intersection tolerance for all section curves between pair of faces has been calculated as the
maximal tolerance among all curves. Now, each curve has its own valid tolerance calculated as the maximal
deviation of the 3D curve from its 2D curves or surfaces in case there are no 2D curves.

• The methods IntTools_FaceFace::TolReached3d(), IntTools_FaceFace::TolReal() and IntTools_FaceFace::←↩
TolReached2d() have been removed.

• Intersection tolerances of the curve can be obtained from the curve itself:

– IntTools_Curve::Tolerance() - returns the valid tolerance for the curve;

– IntTools_Curve::TangentialTolerance() - returns the tangential tolerance, which reflects the size of the
common between faces.

• 2d tolerance (IntTools_FaceFace::TolReached2d()) has been completely removed from the algorithm as un-
used.

13.12 Restore OCCT 6.9.1 persistence

The capability of reading / writing files in old format using Storage_ShapeSchema functionality from OCCT 6.9.1
has been restored in OCCT 7.2.0.

One can use this functionality in two ways:

• invoke DRAW Test Harness commands fsdread / fsdwrite for shapes;

• call StdStorage class Read / Write functions in custom code.

The code example below demonstrates how to read shapes from a storage driver using StdStorage class.

// aDriver should be created and opened for reading
Handle(StdStorage_Data) aData;

// Read data from the driver
// StdStorage::Read creates aData instance automatically if it is null
Storage_Error anError = StdStorage::Read(*aDriver, aData);
if (anError != Storage_VSOk)
{

// Error processing
}

// Get root objects
Handle(StdStorage_RootData) aRootData = aData->RootData();
Handle(StdStorage_HSequenceOfRoots) aRoots = aRootData->Roots();
if (!aRoots.IsNull())
{

// Iterator over the sequence of root objects
for (StdStorage_HSequenceOfRoots::Iterator anIt(*aRoots); anIt.More(); anIt.Next())
{
Handle(StdStorage_Root)& aRoot = anIt.ChangeValue();
// Get a persistent root’s object
Handle(StdObjMgt_Persistent) aPObject = aRoot->Object();
if (!aPObject.IsNull())
{

Handle(ShapePersistent_TopoDS::HShape) aHShape =
Handle(ShapePersistent_TopoDS::HShape)::DownCast(aPObject);
if (aHShape) // Downcast to an expected type to import transient data
{

TopoDS_Shape aShape = aHShape->Import();
shapes.Append(aShape);

}

(c) Open CASCADE 2018

13.13 Change in BRepLib_MakeFace algorithm 39

}
}

}

The following code demonstrates how to write shapes in OCCT 7.2.0 using StdStorage class.

// Create a file driver
NCollection_Handle<Storage_BaseDriver> aFileDriver(new FSD_File());

// Try to open the file driver for writing
try
{

OCC_CATCH_SIGNALS
PCDM_ReadWriter::Open (*aFileDriver, TCollection_ExtendedString(theFilename), Storage_VSWrite);

}
catch (Standard_Failure& e)
{

// Error processing
}

// Create a storage data instance
Handle(StdStorage_Data) aData = new StdStorage_Data();
// Set an axiliary application name (optional)
aData->HeaderData()->SetApplicationName(TCollection_ExtendedString("Application"));

// Provide a map to track sharing
StdObjMgt_TransientPersistentMap aMap;
// Iterator over a collection of shapes
for (Standard_Integer i = 1; i <= shapes.Length(); ++i)
{

TopoDS_Shape aShape = shapes.Value(i);
// Translate a shape to a persistent object
Handle(ShapePersistent_TopoDS::HShape) aPShape =
ShapePersistent_TopoDS::Translate(aShape, aMap, ShapePersistent_WithTriangle);

if (aPShape.IsNull())
{
// Error processing

}

// Construct a root name
TCollection_AsciiString aName = TCollection_AsciiString("Shape_") + i;

// Add a root to storage data
Handle(StdStorage_Root) aRoot = new StdStorage_Root(aName, aPShape);
aData->RootData()->AddRoot(aRoot);

}

// Write storage data to the driver
Storage_Error anError = StdStorage::Write(*aFileDriver, aData);
if (anError != Storage_VSOk)
{

// Error processing
}

13.13 Change in BRepLib_MakeFace algorithm

Previously, BRepLib_MakeFace algorithm changed orientation of the source wire in order to avoid creation of face
as a hole (i.e. it is impossible to create the entire face as a hole; the hole can be created in context of another face
only). New algorithm does not reverse the wire if it is open. Material of the face for the open wire will be located on
the left side from the source wire.

13.14 Change in BRepFill_OffsetWire algorithm

From now on, the offset will always be directed to the outer region in case of positive offset value and to the inner
region in case of negative offset value. Inner/Outer region for an open wire is defined by the following rule: when we
go along the wire (taking into account edges orientation) the outer region will be on the right side, the inner region
will be on the left side. In case of a closed wire, the inner region will always be inside the wire (at that, the edges
orientation is not taken into account).

(c) Open CASCADE 2018

13.15 Change in Geom(2d)Adaptor_Curve::IsPeriodic 40

13.15 Change in Geom(2d)Adaptor_Curve::IsPeriodic

Since 7.2.0 version, method IsPeriodic() returns the corresponding status of periodicity of the basis curve regardless
of closure status of the adaptor curve (see method IsClosed()). Method IsClosed() for adaptor can return false even
on periodic curve, in the case if its parametric range is not full period, e.g. for adaptor on circle in range [0, π]. In
previous versions, IsPeriodic() always returned false if IsClosed() returned false.

13.16 Change in algorithm ShapeUpgrade_UnifySameDomain

The history of the changing of the initial shape was corrected:

• all shapes created by the algorithm are considered as modified shapes instead of generated ones;

• method Generated was removed and its calls should be replaced by calls of method History()->Modified.

13.17 Changes in STL Reader / Writer

Class RWStl now uses class Poly_Triangulation for storing triangular mesh instead of StlMesh data classes; the
latter have been removed.

13.18 Refactoring of the Error/Warning reporting system in Boolean Component

The Error/Warning reporting system of the algorithms in Boolean Component (in all BOPAlgo_∗ and BRepAlgoA←↩
PI_∗ algorithms) has been refactored. The methods returning the status of errors and warnings of the algorithms
(ErrorStatus() and WarningStatus()) have been removed. Instead use methods HasErrors() and HasWarnings() to
check for presence of errors and warnings, respectively. The full list of errors and warnings, with associated data
such as problematic sub-shapes, can be obtained by method GetReport().

(c) Open CASCADE 2018

14 Upgrade to OCCT 7.2.1 41

14 Upgrade to OCCT 7.2.1

14.1 Changes in ShapeUpgrade_UnifySameDomain

The following public methods in the class ShapeUpgrade_UnifySameDomain became protected:

• UnifyFaces

• UnifyEdges

The following public method has been removed:

• UnifyFacesAndEdges

14.2 Moving BuildPCurveForEdgeOnPlane from BOPTools_AlgoTools2D to BRepLib

The methods BuildPCurveForEdgeOnPlane and BuildPCurveForEdgesOnPlane have been moved from the class
BOPTools_AlgoTools2D to the more lower level class BRepLib.

14.3 Removed features

The following obsolete features have been removed:

• The package BOPCol has been fully removed:

– BOPCol_BaseAllocator is replaced with Handle(NCollection_BaseAllocator);

– BOPCol_BoxBndTree is replaced with BOPTools_BoxBndTree;

– BOPCol_Box2DBndTree is removed as unused;

– BOPCol_DataMapOfIntegerInteger is replaced with TColStd_DataMapOfIntegerInteger;

– BOPCol_DataMapOfIntegerListOfInteger is replaced with TColStd_DataMapOfIntegerListOfInteger;

– BOPCol_DataMapOfIntegerListOfShape is replaced with TopTools_DataMapOfIntegerListOfShape;

– BOPCol_DataMapOfIntegerMapOfInteger.hxx is removed as unused;

– BOPCol_DataMapOfIntegerReal is replaced with TColStd_DataMapOfIntegerReal;

– BOPCol_DataMapOfIntegerShape is replaced with TopTools_DataMapOfIntegerShape;

– BOPCol_DataMapOfShapeBox is replaced with TopTools_DataMapOfShapeBox;

– BOPCol_DataMapOfShapeInteger is replaced with TopTools_DataMapOfShapeInteger;

– BOPCol_DataMapOfShapeListOfShape is replaced with TopTools_DataMapOfShapeListOfShape;

– BOPCol_DataMapOfShapeReal is replaced with TopTools_DataMapOfShapeReal;

– BOPCol_DataMapOfShapeShape is replaced with TopTools_DataMapOfShapeShape;

– BOPCol_DataMapOfTransientAddress is removed as unused;

– BOPCol_IndexedDataMapOfIntegerListOfInteger is removed as unused;

– BOPCol_IndexedDataMapOfShapeBox is removed as unused;

– BOPCol_IndexedDataMapOfShapeInteger is removed as unused;

– BOPCol_IndexedDataMapOfShapeListOfShape is replaced with TopTools_IndexedDataMapOfShape←↩
ListOfShape;

– BOPCol_IndexedDataMapOfShapeReal is removed as unused;

– BOPCol_IndexedDataMapOfShapeShape is replaced with TopTools_IndexedDataMapOfShapeShape;

– BOPCol_IndexedMapOfInteger is replaced with TColStd_IndexedMapOfInteger;

– BOPCol_IndexedMapOfOrientedShape is replaced with TopTools_IndexedMapOfOrientedShape;

(c) Open CASCADE 2018

14.3 Removed features 42

– BOPCol_IndexedMapOfShape is replaced with TopTools_IndexedMapOfShape;

– BOPCol_ListOfInteger is replaced with TColStd_ListOfInteger;

– BOPCol_ListOfListOfShape is replaced with TopTools_ListOfListOfShape;

– BOPCol_ListOfShape is replaced with TopTools_ListOfShape;

– BOPCol_MapOfInteger is replaced with TColStd_MapOfInteger;

– BOPCol_MapOfOrientedShape is replaced with TopTools_MapOfOrientedShape;

– BOPCol_MapOfShape is replaced with TopTools_MapOfShape;

– BOPCol_PListOfInteger is removed as unused;

– BOPCol_PInteger is removed as unused

– BOPCol_SequenceOfPnt2d is replaced with TColgp_SequenceOfPnt2d;

– BOPCol_SequenceOfReal is replaced with TColStd_SequenceOfReal;

– BOPCol_SequenceOfShape is replaced with TopTools_SequenceOfShape;

– BOPCol_Parallel is replaced with BOPTools_Parallel;

– BOPCol_NCVector is replaced with NCollection_Vector;

• The class BOPDS_PassKey and containers for it have been removed as unused.

• The unused containers from IntTools package have been removed:

– IntTools_DataMapOfShapeAddress is removed as unused;

– IntTools_IndexedDataMapOfTransientAddress is removed as unused;

• The container BiTgte_DataMapOfShapeBox is replaced with TopTools_DataMapOfShapeBox;

• The class BOPTools has been removed as duplicate of the class TopExp;

• The method BOPAlgo_Builder::Splits() has been removed as excessive. The method BOPAlgo_Builder::←↩
Images() can be used instead.

• The method BOPTools_AlgoTools::CheckSameGeom() has been removed as excessive. The method BOP←↩
Tools_AlgoTools::AreFacesSameDomain() can be used instead.

(c) Open CASCADE 2018

15 Upgrade to OCCT 7.3.0 43

15 Upgrade to OCCT 7.3.0

15.1 Light sources

Multiple changes have been applied to lights management within TKV3d and TKOpenGl:

• V3d_Light class is now an alias to Graphic3d_CLight. Graphic3d_CLight is now a Handle class with refactored
methods for managing light source parameters. Most methods of V3d_Light sub-classes have been preserved
to simplify porting.

• Obsolete debugging functionality for drawing a light source has been removed from V3d_Light. Methods and
constructors that take parameters for debug display and do not affect the light definition itself have also been
removed.

• Light constructors taking V3d_Viewer have been marked as deprecated. Use method AddLight() of the class
V3d_Viewer or V3d_View to add new light sources to a scene or a single view, respectively.

• The upper limit of 8 light sources has been removed.

• The classes for specific light source types: V3d_AmbientLight, V3d_DirectionalLight, V3d_PositionalLight and
V3d_SpotLight have been preserved, but it is now possible to define the light of any type by creating base
class Graphic3d_CLight directly. The specific classes only hide unrelated light properties depending on the
type of light source.

• It is no more required to call V3d_Viewer::UpdateLights() after modifying the properties of light sources (color,
position, etc.)

15.2 Shading Models

Graphic3d_AspectFillArea3d has been extended by a new property ShadingModel(), which previously has been
defined globally for the entire View.

Previously, a triangle array without normal vertex attributes was implicitly considered as unshaded, but now such
array will be shaded using Graphic3d_TOSM_FACET model (e.g. by computing per-triangle normals). Therefore,
Graphic3d_TOSM_UNLIT should be explicitly specified to disable shading of triangles array. Alternatively, a material
without reflectance properties can be used to disable shading (as before).

15.3 Custom low-level OpenGL elements

The following API changes should be considered while porting custom OpenGl_Element objects:

• OpenGl_ShaderManager::BindFaceProgram(), BindLineProgram(), BindMarkerProgram() now take enumer-
ation arguments instead of Boolean flags.

15.4 Changes in BOPAlgo_Section

The public method BuildSection() in the class BOPAlgo_Section has become protected. The methods Perform() or
PerformWithFiller() should be called for construction of the result of SECTION operation.

15.5 Changes in BRepAdaptor_CompCurve

The method BRepAdaptor_CompCurve::SetPeriodic has been eliminated. Since the new version, the method B←↩
RepAdaptor_CompCurve::IsPeriodic() will always return FALSE. Earlier, it could return TRUE in case if the wire
contained only one edge based on a periodic curve.

(c) Open CASCADE 2018

15.6 Removed features 44

15.6 Removed features

• The methods SetDeflection, SetEpsilonT, SetDiscretize of the class IntTools_EdgeFace have been removed
as redundant.

15.7 Boolean Operations - Solid Builder algorithm

Previously, the unclassified faces of BOPAlgo_BuilderSolid algorithm (i.e. the faces not used for solids creation and
located outside of all created solids) were used to form an additional (not closed) solid with INTERNAL orientation.
Since the new version, these unclassified faces are no longer added into the resulting solids. Instead, the warning
with a list of these faces appears.

The following public methods of the BOPAlgo_BuilderSolid class have been removed as redundant:

• void SetSolid(const TopoDS_Solid& theSolid);

• const TopoDS_Solid& Solid() const;

15.8 Boolean Operation classes in BRepAlgo are deprecated

The API classes in the package BRepAlgo providing access to old Boolean operations are marked as deprecated:

• BRepAlgo_Fuse

• BRepAlgo_Common

• BRepAlgo_Cut

• BRepAlgo_Section Corresponding classes from the package BRepAlgoAPI should be used instead.

15.9 Unification of the Error/Warning reporting system of Application Framework

Class CDM_MessageDriver and its descendants have been removed; class Message_Messenger is used instead
in all OCAF packages. By default, messenger returned by Message::DefaultMessenger() is used, thus all messages
generated by OCAF are directed in the common message queue of OCCT.

In classes implementing OCAF persistence for custom attributes (those inheriting from BinMDF_ADriver, XmlM←↩
DF_ADriver), uses of method WriteMessage() should be replaced by call to method Send() of the inherited field
myMessageDriver. Note that this method takes additional argument indicating the gravity of the message (Trace,
Info, Warning, Alarm, or Fail).

Class Message_PrinterOStream can be used instead of CDM_COutMessageDriver to direct all messages to a
stream. If custom driver class is used in the application, that class shall be reimplemented inheriting from Message←↩
_Printer instead of CDM_MessageDriver. Method Send() should be redefined instead of method Write() of CDM←↩
_MessageDriver. To use the custom printer in OCAF, it can be either added to default messenger or set into the
custom Message_Messenger object created in the method MessageDriver() of a class inheriting CDF_Application.

(c) Open CASCADE 2018

	Introduction
	Precautions
	Disclaimer

	Upgrade to OCCT 6.5.0
	Upgrade to OCCT 6.5.1
	Upgrade to OCCT 6.5.2
	Upgrade to OCCT 6.5.3
	Upgrade to OCCT 6.5.4
	Upgrade to OCCT 6.6.0
	Upgrade to OCCT 6.7.0
	Object-level clipping and capping algorithm.
	Redesign of markers presentation
	Default views are not created automatically
	Improved dimensions implementation
	NCollection_Set replaced by List collection

	Upgrade to OCCT 6.8.0
	Changes in NCollection classes
	3D View Camera
	Redesign of Connected Interactive Objects
	Support of UNICODE Characters
	Elimination of Projection Shift Concept

	Upgrade to OCCT 6.9.0
	3D Viewer initialization
	Changes in Selection
	Changes in Adaptor3d_Curve class
	Changes in V3d_View class

	Upgrade to OCCT 7.0.0
	Removal of legacy persistence
	Removal of CDL and WOK
	Automatic upgrade
	Possible compiler errors
	Possible runtime problems
	Option to avoid cast of handle to reference to base type
	Preserving compatibility with OCCT 6.x
	Applications based on CDL and WOK

	Separation of BSpline cache
	Structural result of Boolean operations
	BRepExtrema_ExtCC finds one solution only
	Removal of SortTools package
	On-screen objects and ColorScale
	UserDraw and Visual3d
	Deprecation of Local Context
	Separation of visualization part from TKCAF
	Correction of interpretation of Euler angles in gp_Quaternion
	Zoom Persistent Selection
	Texture mapping of objects
	Shape presentation builders

	Upgrade to OCCT 7.1.0
	Presentation attributes
	Typedefs
	Programmable Pipeline
	Transformation persistence
	Dynamic highlight and selection properties
	Correction in TObj_Model class
	Redundant environment variables
	Removed features
	Other changes

	Upgrade to OCCT 7.2.0
	Removed features
	Corrections in BRepOffset API
	Corrections in BRepOffset API
	Highlight style
	Elimination of implicit 3D Viewer updates
	Elimination of Quantity_NameOfColor from TKV3d interface classes
	Result of Boolean operations on containers
	Other changes
	BOP - Pairs of interfering indices
	Removal of the Draw commands based on old Boolean operations
	Change of Face/Face intersection in Boolean operations
	Restore OCCT 6.9.1 persistence
	Change in BRepLib_MakeFace algorithm
	Change in BRepFill_OffsetWire algorithm
	Change in Geom(2d)Adaptor_Curve::IsPeriodic
	Change in algorithm ShapeUpgrade_UnifySameDomain
	Changes in STL Reader / Writer
	Refactoring of the Error/Warning reporting system in Boolean Component

	Upgrade to OCCT 7.2.1
	Changes in ShapeUpgrade_UnifySameDomain
	Moving BuildPCurveForEdgeOnPlane from BOPTools_AlgoTools2D to BRepLib
	Removed features

	Upgrade to OCCT 7.3.0
	Light sources
	Shading Models
	Custom low-level OpenGL elements
	Changes in BOPAlgo_Section
	Changes in BRepAdaptor_CompCurve
	Removed features
	Boolean Operations - Solid Builder algorithm
	Boolean Operation classes in BRepAlgo are deprecated
	Unification of the Error/Warning reporting system of Application Framework

