//I‘ LASCADE

Open CASCADE Technology
7.3.0

CONTENTS 1

Contents
1 Introduction. e 17
1.1 OVerVIEW . . L o e 17
1.2 Contents of thisdocumentation 17
1.3 Gettingstarted L e e 18
1.3.1 Launching DRAW TestHarness 18
1.3.2 Plug-inresourcefile. 18
1.3.3 Activation of commands implemented in the plug-in 18
2 TheCommand Language 0 i i e 20
21 OVEIVIEW . . . o e e 20
22 Syntaxof TCL e 20
2.3 Accessingvariablesin TCLandDraw 22
2.3.1 set,unset e e e e e 22
2.3.2 dset,dval e e s e 22
2.3.3 del,dall e e e 23
2.4 ists . . e 23
241 Control Structures e e 23
242 0. 24
2.4.3 while, for,foreach e e 24
2.4.4 break,continue L e e 24
25 Procedures e e 25
251 Proc . . .o e 25
252 global,upvar e 25
3 BasicCommands 27
3.1 Generalcommands e e 27
311 help . . . e 27
312 SOUICE . . . o o e e e e e e 27
318 SPY . e 28
3.1.4 cpulimit e 28
315 wait .. e e 28
3.1.6 chrono. e e 28
3.2 \Variable managementcommands Lo 29
3.2.1 isdraw, directory L. L 29
3.22 whatis,dump L L 29
3.2.3 renamevar, CopY i e e e e e e e e e e e e 30
3.2.4 datadir, save,restore L 30
3.3 Userdefinedcommands e 31
3.3 set. . e e 31

(c) Open CASCADE 2018

CONTENTS 2
3.83.2 get. . . e 31

4 GraphicCommands 33
4.1 AXONOMELrC VIBWEN o o o e e e e e e e 33
411 view,delete L e 33

4.1.2 axo, pers,top,o e e e e 33
4.1.3 mu, md, 2dmu, 2dmd, zoom, 2dZOOM e e e e e e e e e e 34
414 pu,pd, pl,pr,2dpu, 2dpd, 2dpl, 2dpro 34
415 fit,2dfit e 35
416 U, d, L r o e e e e s 35
41.7 focal, fu,fd e e e 35
418 COlOr. . . . e e 36
4.1.9 diext. e 36
4.1.10 hardcopy, hcolor, xwd L 36
4111 welick, pick e 37
4112 autodisplay L e 38
4113 display, donly 38
4.1.14 erase, clear,2dclear e e e 39
4115 disp,don,era L e e e e 39
4116 repaint, dflush L 39

4.2 AlSviewer--viewcommands Lo e e e e 40
421 vinit .. 40
422 vhelp . . . e 40
423 VIOP . . . e 40
424 VAXO e e e e 40
425 vsetbg 41
426 vclear L e 41
4.2.7 vrepaint L L e e e e e 41
428 Viit. .o 41
429 vzfit ..o e 41
4210 vreadpixel e e 41
4211 wvselect e 42
4212 vMOVEIO e e e e e e 42
4213 WIBWPAramS e e e e e e e 42
4.2.14 vchangeselected L 42
4215 vzclipping e e e 43
4216 vnbselected 43
4217 vpurgedisplay e 43
4218 Vhir . . e e e 43
4219 vhirtype e 43

(c) Open CASCADE 2018

CONTENTS 3
4220 VCAMErA o e e e e e e e e 44
4221 vstereo e e 44
4.2.22 virustumeulling 45

4.3 AlSviewer--display commands L. 45
431 wvdisplay e e 45
432 vdonly e e 46
43.3 wvdisplayall 46
4.3.4 VErase e e 46
435 veraseall 47
4.3.6 vsetdispmode L. e 47
4.3.7 vdisplaytype e e 47
4.3.8 verasetype e e 47
4.3.9 VIYPES e 48
4.3.10 VaspecCts e e e e 48
4.3.11 wsetshading e 50
4.3.12 vunsetshading 50
4313 vsetam . . . L e e 50
4.3.14 vunsetam L L e e e 51
4315 vdump . ..o 51
4.3.16 vdir . . .o 51
4317 vsub . .. 51
4318 vsensdis. L e e e 52
4.3.19 VSENSEra e e e e e e e 52
4320 VI o 52
4.3.21 vstate L e 52
4.3.22 vraytraCe e e e e e 53
4.3.23 vrenderparams e e e e e e e e e e e 53
4.3.24 vshaderprog e e e e 53
4.3.25 wvsetcolorbg e 54

4.4 AlSviewer--objectcommands 54
4.4 virihedron L L e 54
4.42 vplanetri e 54
443 VSIZE . .. e 54
444 vaxiS e e e 55
445 vaxisparao .o e e e e e e e 55
4.4.6 vaxisortho 55
4.4.7 VPOINE . . . L e e e e 55
448 vplane L e 56
449 vplanepara e e 56
4410 vplaneortho L e 56

(c) Open CASCADE 2018

CONTENTS 4
4411 viine e e 56
4412 VCircle e e e 57
4413 viri2d ... 57
4.414 vselmode L e e 57
4415 veonnect L e 58
4416 viriangle L e 58
4407 vsegment oL e e 58
4.418 wvpointcloud e 58
4.419 vclipplane e 59
4420 vdimension e e 59
4.421 vdimparam e e e e e e 60
4,422 vangleparam e e e e e e e 60
4.4.23 vlengthparam L e 60
4424 vmovedim e e e e 61

4.5 AIS viewer -- Mesh Visualization Service 61
451 meshfromstl 61
452 meshdispmode L e 61
453 meshselmode 62
454 meshshadcolor 62
455 meshlinkcolor L 62
456 meshmat e 62
4.5.7 meshshrcoef 63
458 meshshow e 64
459 meshhide e 64
4510 meshhidesel L 64
4511 meshshowsel e 64
4512 meshshowall 64
4513 meshdelete 65

4.6 VIS Viewercommands e e e e 65
4.6.1 ivikinit . . . L L e e 65
4.6.2 ivikdisplay e e 65
4.6.3 ivikerase 66
4.6.4 ivikfit ..o L 66
4.6.5 ivikdispmode e 67
4.6.6 iviksetselmode 67
4.6.7 ivikmoveto L e 68
4.6.8 ivikseleCt L e 68
4.6.9 ivikdump ... e 68
4.6.10 ivikbgeolor e 69

(c) Open CASCADE 2018

CONTENTS 5

5 OCAFcommands i e 71
5.1 Applicationcommands L 71
51.1 NewDocument 71

51.2 IsInSession e 71
5.1.3 ListDocuments e 71

51.4 0pen e 71
515 Close o e 72
516 Save 72
5.1.7 SaveAs e 72

5.2 Basiccommands e e e 72
5.2.1 Label 72
522 NewChild 73
523 Children e 73
5.2.4 ForgetAll e 73
525 Applicationcommands L 73

526 Main. e e 73
527 UndoLimit L 74
528 UNndo e 74
529 Redo e 74
5210 OpenCommand o i e e e e 74
5211 CommitCommand e e e 74
5212 NewCommand e 75
5.2.13 AbortCommand e e 75
5214 COPY . . o o e 75
5.2.15 UpdateLink 75
5.216 CopyWithLink 75
5.2.17 UpdateXLinks e e 76
5.2.18 DumpDocument. 76

5.3 Data Framework commands 76
5.3.1 MakeDF e 76
53.2 ClearDF e 76
5.3.3 CopyDF e 76
5.3.4 CopylLabel e 77
5.3.5 MiniDumpDF 77
5.3.6 XDumpDF e e 77

5.4 General attributescommands L 77
5.4.1 Setlnteger e 77
542 Getlnteger. L 77
5.4.3 SetReal e 78
544 GetReal e 78

(c) Open CASCADE 2018

CONTENTS 6
5.4.5 SetIntArray L e e 78
546 GetIntArray e e e 78
547 SetRealArray e 78
548 GetRealArray e e 79
549 SetComment e 79
5410 GetComment e e e 79
5411 SetExtStringArray e 79
5412 GetExtStringArray L 79
5413 SetName e e 80
5414 GetName e e 80
5.4.15 SetReference e 80
5416 GetReference e 80
5417 SetUAttribute L e 80
5.4.18 GetUAttribute 81
5419 SetFunction 81
5.4.20 GetFunction L L 81
5421 NewShape e 81
5.4.22 SetShape e e 81
5423 GetShape e 82

5.5 Geometric attributes commands L 82
551 SetPoint 82
552 GetPoint. L 82
5.5.3 SetAXiS e e 82
554 GetAXiS e e 82
555 SetPlane 83
556 GetPlane e 83
557 SetGeometry e e 83
5.5.8 GetGeometryType e e e 83
55.9 SetConstraint L e 83
5.5.10 GetConstraint e 84
5511 SetVariable 84
5.5.12 GetVariable 84

5.6 Treeattributescommands 84
5.6.1 RootNode 84
56.2 SetNode. e 85
5.6.3 AppendNode e e 85
5.6.4 PrependNode e 85
5.6.5 InsertNodeBefore L 85
5.6.6 InsertNodeAfter L 85
5.6.7 DetachNode e 85

(c) Open CASCADE 2018

CONTENTS 7

5.6.8 ChildNodelterate e 86
5.6.9 InitChildNodelterator 86
5.6.10 ChildNodeMore e 87
5.6.11 ChildNodeNext e 87
5.6.12 ChildNodeValue e 87
5.6.13 ChildNodeNextBrother 87

5.7 Standard presentation commands Lo 87
571 AlSInitViewer L 87
5.7.2 AISRepaint e 87
5.7.3 AISDisplay e 88
574 AlSUpdate e 88
575 AISErase e 88
576 AISRemove L e 88
5.7.7 AISSet 88
5.7.8 AISDriver e 89
5.7.9 AISUnset e 89
5710 AISTransparenCy o v i i e e e e e 89
5.7.11 AISHasOwNnTransparency o v v v i v it e e e e e e e e 89
5712 AlSMaterial 89
5.7.13 AISHasOwnMaterial e 90
5.7.14 AISColor e e 90
5.7.15 AISHasOwnColor e e 90

6 Geometrycommands L e 91
6.1 OVerview e e e 91
6.2 Curvecreation L e 91
6.2.1 point. . . . L 92
6.22 liNe . . . e 92
6.2.3 CirCle 92
6.2.4 ellipse e 93
6.2.5 hyperbola L 93
6.2.6 parabola. 94
6.2.7 beziercurve, 2dbeziercurve L L e 94

6.2.8 bsplinecurve, 2dbsplinecurve, pbsplinecurve, 2dpbsplinecurve 95

B.2.9 UISO, VISO e e e e e e s 95
6.2.10 to3d,to2d e 96
B.2.11 Project o e 96

6.3 Surfacecreation 96
6.3.1 plane 97
6.3.2 cylinder 97

(c) Open CASCADE 2018

CONTENTS 8

6.4

6.5

6.6

6.7

6.8

6.3.3 CONE 97
6.3.4 sphere. e 98
6.3.5 tOrus e 98
6.3.6 beziersurf L 98
6.3.7 bsplinesurf, upbsplinesurf, vpbsplinesurf, uvpbsplinesurf 99
6.3.8 trim, trimu, trimv e 99
6.3.9 offset 100
6.3.10 revsurf. e e 100
6.3.11 extsurf L 101
6.3.12 convert 101
Curve and surface modifications L L 101
6.4.1 reverse, UreVErSE, VIEVEISE v v v v v o e e e e e e e e e e e e e e e e e 102
6.4.2 exchuv 102
6.4.3 segment, SEgSUro e e e e e 102
6.4.4 iincudeg,incvdeg L L 103
6.4.5 cmovep, movep, MOVECOIP, MOVEIOWP o v v vt et e e e e e e e e e e 103
6.4.6 insertpole, rempole, remcolpole, remrowpole Lo 104
6.4.7 insertknot, insertuknot, insertvknot oL 104
6.4.8 remknot, remuknot, remvknot L 104

6.4.9 setperiodic, setnotperiodic, setuperiodic, setunotperiodic, setvperiodic, setvnotperiodic . . 105

6.4.10 setorigin, setuorigin, setvorigin L L 105
Transformations L e e 105
6.5.1 translate,dtranslate 105
6.5.2 rotate,2drotate e e 106
6.5.3 pmirror, Imirror, smirror, dpmirror, dimirror L Lo 106
6.5.4 pscale,dpscale 107
Curve and surface analysis e 107
6.6.1 €COOrd 107
6.6.2 cvalue,2dcvalue e 108
6.6.3 svalue L 108
6.6.4 localprop, minmaxcurandinfo 108
6.6.5 parameters e e e 108
6.6.6 Proj, 2dproj e e e e 109
6.6.7 surface_radius L 109
Intersections e 109
6.7.1 intersect 109
6.7.2 2dintersect 110
6.7.3 INtCONCON 110
Approximations L L 110
6.8.1 @ppro, dapproXo e e e e e 110

(c) Open CASCADE 2018

CONTENTS 9

6.8.2 surfapp, grilapp 111

6.9 Projections. 111
6.9.1 projponfo e e 111

6.10 Constraints e e 112
6.10.1 cirtang e 112
6.10.2 lintan 112

6.11 Display e 112
6.11.1 dmod, discr,defle e 113
6.11.2 nbisO e 113
6.11.3 clpoles,shpoles 113
6.11.4 clknots, shknots e 114

7 Topologycommands 115
7.1 Basictopology e 115
7.1.1 isos, discretisation e 116

7.1.2 orientation, complement, invert, normals,range 116

7.1.3 explode, exwire, nbshapes L 117

7.1.4 emptycopy, add, compound L L L e 117

745 compare. e 118

7.1.6 issubshape 118

7.2 Curveandsurfacetopology L 119
721 verteX e 119

722 mkpoint 119

7.2.3 edge, mkedge, uisoedge, visoedge L 119
7.2.4 wire, polyline, polyvertex 120

725 profile 120

7.2.6 bsplineprof L 122
727 mkoffset 122

7.2.8 mkplane, mkface L 123

7.2.9 mkecurve, mksurface e e e 123
7210 PCUIVE . . . L o e e e 124
7211 chfi2d e e e 124
7.212 nProjecCt e 125

7.3 Primitives e 125
731 box,wedge e 125

7.3.2 pcylinder, pcone, psphere, ptorus 126

7.83.3 halfspace e 126

74 SWEEPING e e e 127
741 PriSM ..o e 127
7.42 revol . . L 127

(c) Open CASCADE 2018

CONTENTS 10

7.5

7.6

7.7

7.8

7.9
7.10

7.11

7.12

TA3 PIPE . o 127
7.4.4 mksweep, addsweep, setsweep, deletesweep, buildsweep, simulsweep 128
745 thrusections L 129
Topological transformation L 129
7.5.1 HCOPY . . . o e e e e 129
7.5.2 tmove,treset e 130
7.5.3 ttranslate, trotate L e e 130
7.5.4 tmirror,tscale L e 130
Old Topological operations e 131
7.6.1 fuse,cut,common e e e e e 131
7.6.2 section, psection 131
7.6.3 SEWING e 132
New Topological operations 132
7.71 bparallelmode L. 132
7.7.2 bop, bopfuse, bopcut, boptuc, bopcommono oL 132
7.7.3 bopsection 133
7.7.4 bopcheck, bopargshape 134
Draftingand blending e e 135
7.8.1 depouille 135
7.82 chamf 136
7.8.3 blend . .. 136
7.8.4 bfuseblend L 137
7.85 beutblend 137
7.8.6 mkevol, updatevol, buildevol 137
Defeaturing e 138
Analysis of topology and geometry 138
7.10.1 1props, SProps, VPIOPS .« o v v v v e e e e e e e e e e e e 139
7.10.2 bounding L. e 139
7.10.3 isbbinterf L 140
7.10.4 distmini ... L 141
7.10.5 xdistef, xdistcs, xdistcc, xdistc2dc2dss, xdistcc2ds oL 141
7.10.6 checkshape L 142
7.10.7 tolsphere 142
7.10.8 validrange L 143
Surface creation L 143
7411 gplate, 143
7.11.2 filling, fillingparam 144
Complex Topology o o e e 145
7.12.1 offsetshape, offsetcompshape o L 145
7.12.2 featprism, featdprism, featrevol, featlf, featrf o oL 146

(c) Open CASCADE 2018

CONTENTS 11

7123 draft . .o 147
7124 deform .. Lo L 147
7125 nurbsconvert L L L 148
7.12.6 edgestofaces L 148
7.13 History commands L e e e 148
7.13.1 savehistory L e 148
7.13.2 isdeleted 149
7133 modified 149
7.13.4 generated L L 150
7.13.5 Enabling Draw history support for the algorithms 150

7.14 Texture MappingtoaShape e 150
7A4.1 viexture L 151
7142 viexscale L 151
7A4.3 vEeXOrigino e 151
714.4 viexrepeal L L e 151
7145 viexdefault L 151

8 General Fuse Algorithmcommands 153
8.1 Definitions e 153
8.2 Generalcommands e e 153
8.3 Commands for Intersection Part. 153
8.3.1 bopds e 153
8.3.2 bopdsdump 154
8.3.3 bopindex e 154
8.3.4 bopiterator L e 154
8.3.5 bopinterf. 155
8.3.6 bOPSPo e 155
8.3.7 bopcbo e 156
8.3.8 bopfin e 156
8.3.9 bopfon. e e 156
8.3.10 bopwho e 157
8.3.11 bopnews L e 157

8.4 Commands forthe Building Part 157
8.4.1 bOpIM e e e e 158

9 Data Exchangecommands 159
9.1 IGEScommands e e e 159
9.1.1 igesread e 159
9.1.2 tplosttrim e 160
9.1.3 brepiges e e e e 160

9.2 STEPcommands e e e 160

(c) Open CASCADE 2018

CONTENTS 12

9.3

9.4

9.5

9.6

9.2.1 stepread. L e e e 160
9.2.2 stepwrite L e 161
Generalcommands L e e 161
9.3.1 count e e 161
9.32 data 162
9.3.3 elabel e 162
934 entity 162
9.35 enum ... e e e e 163
9.3.6 estatus e e 163
9.3.7 fromshape. e 163
9.3.8 givecount L L e e 163
9.3.9 givelist. . . . L e 163
9.3.10 listcount e e 164
9.3.11 listitems 164
9.3.12 listtypes e e 164
9.3.13 newmodel L e 164
9.3.14 param e e 165
9.3.15 sumcount L L L e e e 165
9.3.16 fpclear. e 165
9.3.17 tpdraw L e e e 165
9.3.18 tpent. e e 165
9.3.19 ftpstat 166
9.3.20 xload e e e 166
Overview of XDE commands i e e 167
9.41 Readlges e 167
9.42 ReadStep e e 167
9.4.3 Writelges e 167
9.4.4 WriteStep e e e 168
945 XFileCur. 168
9.4.6 XFileList. 168
947 XFileSet 168
9.4.8 XFromShape e 169
XDE general commands e e e e e 169
9.5.1 XNewDocC 169
9.5.2 XShoW 169
953 XStat e 169
9.5.4 XWAUMP 170
955 XAdUump . ..o 170
XDE shape commands 170
9.6.1 XAddComponent 170

(c) Open CASCADE 2018

CONTENTS 13
9.6.2 XAddShape 170
9.6.3 XFindComponent e e 171
9.6.4 XFindShape 171
9.6.5 XGetFreeShapes e 171
9.6.6 XGetOneShape e 172
9.6.7 XGetReferredShape 172
9.6.8 XGetShape e 172
9.6.9 XGetToplLevelShapes e 172
9.6.10 XLabellnfo e 172
9.6.11 XNewShape e 173
9.6.12 XRemoveComponent 173
9.6.13 XRemoveShape e e 173
9.6.14 XSetShape e 173
9.6.15 XUpdateAssemblies 173

9.7 XDEcolorcommands e e e 174
9.7.1 XAddColor e e 174
9.7.2 XFindColor e e 174
9.7.3 XGetAllColors e e e 174
9.7.4 XGetColor. e e 174
9.7.5 XGetObjVisibility 174
9.7.6 XGetShapeColor e 175
9.7.7 XRemoveColor e 175
9.7.8 XSetColor e 175
9.7.9 XSetObjVisibility 175
9.7.10 XUnsetColor e e 175

9.8 XDElayercommands e 176
9.8.1 XAddLayer e e e 176
9.8.2 XFindLayer e e e e 176
9.8.3 XGetAllLayers o e e e 176
9.8.4 XGetLayers e 176
9.8.5 XGetOneLayer e 176
9.8.6 XlsVisible 177
9.8.7 XRemoveAllLayers e 177
9.8.8 XRemovelLayer e 177
9.8.9 XSetlLayer L e 177
9.8.10 XSetVisibility 177
9.8.11 XUnSetAllLayers e 178
9.8.12 XUnSetLayer e 178

9.9 XDEpropertycommands e e 178
9.9.1 XCheckProps e 178

(c) Open CASCADE 2018

CONTENTS 14
9.9.2 XGetArea e e 178
9.9.3 XGetCentroid L e e 179
9.9.4 XGetVolume e 179
9.95 XSetArea e 179
9.9.6 XSetCentroid e 179
9.9.7 XSetMaterial 179
9.9.8 XSetVolume L e e 180
9.9.9 XShapeMassProps 180
9.9.10 XShapeVolume e 180

10 Shape Healingcommands e 181

10.1 Generalcommands e 181
10.1.1 bsplres L e 181
10.1.2 checkfclass2d L 181
10.1.3 checkoverlapedges 181
10.1.4 comiol L 181
10.1.5 convtorevol 182
10.1.6 directfaces e 182
10.1.7 expshape e 182
10.1.8 fixsmall 182
10.1.9 fixsmalledges 183
10.1.10fixshape e 183
10,111 fiXwW@aps e 183
10.1.12 offsetcurve, offset2dcurve 184
10.1.13 projeurve L L e e 184
10.1.14ProjpCUIVE o o o e e e 184
10.1.15projface 185
10.1.16scaleshape L 185
10.1.17settolerance 185
10.1.18splitface 185
10.1.19statshape L 186
10.1.20t0lerance L 186

10.2 Conversion commandso e e e e e e e e e 186
10.2.1 DT _ClosedSplit e 186
10.2.2 DT_ShapeConvert, DT_ShapeConvertRev, 187
10.2.3 DT_ShapeDivide e 187
10.2.4 DT _SplitAngle 187
10.2.5 DT_SplitCurve e 188
10.2.6 DT _SplitCurve2d e 188
10.2.7 DT_SplitSurface e 188

(c) Open CASCADE 2018

CONTENTS 15

10.2.8 DT_ToBspl 189

11 Performance evaluationcommands Lo 190
11.1 VDrawSphere e e 190
12 Simple vector algebraand measurements L L L o 191
12.1 Vectoralgebracommands L e e e e e 191
1211 VEC . o o e 191
12.1.2 2dVEC e e 191
1213 pIn . . o e e 191
12.1.4 module L 192
12.1.5 2dmodule L e 192
12.1.6 NOrM . . L L L e e 192
12.1.7 2dnOrm . . . L L e e 192
12.1.8 inverse L e 192
12.1.9 2dinverse e 193
12.1.102dort . . . L L e 193
12441dISIPP .« .« o o o e 193
121.122ddistpp - e 193
12043dISIPID © o e 193
121.14distlp . . . L e 194
12.1.152ddistlp e 194
12116diStppp . - . . 194
12117 2ddistppp - - - . . o e e 194
12.1.18barycen 194
12.1.192dbarycen L 195
12.1.20CroSS L e e 195
12.1.212dCr0OSS . . . o o o 195
12.1.22dot. . . . L e e 195
12.1.282ddot 195
12.1.24scale L 196
12.1.252dscale 196

12.2 Measurements commandso e e e e e e 196
1221 pnt. . o e e e e e 196
1222 PNIC . . . o 196
1223 2dpntC. e e 197
12.2.4 pNtSU L L e 197
1225 pntcons L L e 197
1226 dArseg o 197
12.2.7 2ddrseg 198
12.2.8 mpick e 198

(c) Open CASCADE 2018

CONTENTS 16

13

14

12,29 mdist e 198
Inspector commands 199
13.1 tinspector L e e e e e 199
Extending Test Harness with customcommands 201
14.1 Custom command implementation e 201
14.2 Registration of commandsin TestHarnesso 201
14.3 Creating a toolkit (library) asaplug-in 201
14.4 Creation of the plug-inresourcefile 202
14.5 Dynamic loading and activation e 202

(c) Open CASCADE 2018

1 Introduction 17

1 Introduction

This manual explains how to use Draw, the test harness for Open CASCADE Technology (OCCT). Draw is a com-
mand interpreter based on TCL and a graphical system used to test and demonstrate Open CASCADE Technology
modeling libraries.

1.1 Overview

Draw is a test harness for Open CASCADE Technology. It provides a flexible and easy to use means of testing and
demonstrating the OCCT modeling libraries.

Draw can be used interactively to create, display and modify objects such as curves, surfaces and topological
shapes.

Scripts may be written to customize Draw and perform tests. New types of objects and new commands may be
added using the C++ programing language.

Draw consists of:

» A command interpreter based on the TCL command language.
+ A 3d graphic viewer based on the X system.
» A basic set of commands covering scripts, variables and graphics.

« A set of geometric commands allowing the user to create and modify curves and surfaces and to use OCCT
geometry algorithms. This set of commands is optional.

* A set of topological commands allowing the user to create and modify BRep shapes and to use the OCCT
topology algorithms.

There is also a set of commands for each delivery unit in the modeling libraries:

+ GEOMETRY,

TOPOLOGY,

« ADVALGOS,

« GRAPHIC,

« PRESENTATION.

1.2 Contents of this documentation

This documentation describes:

» The command language.

» The basic set of commands.

» The graphical commands.

» The Geometry set of commands.
» The Topology set of commands.
+ OCAF commands.

» Data Exchange commands

+ Shape Healing commands

(c) Open CASCADE 2018

1.3 Getting started 18

This document is a reference manual. It contains a full description of each command. All descriptions have the
format illustrated below for the exit command.

exit

Terminates the Draw, TCL session. If the commands are read from a file using the source command, this will
terminate the file.

Example:

this is a very short example
exit

1.3 Getting started

Install Draw and launch Emacs. Get a command line in Emacs using Esc x and key in woksh.

All DRAW Test Harness can be activated in the common executable called DRAWEXE. They are grouped in toolkits
and can be loaded at run-time thereby implementing dynamically loaded plug-ins. Thus, it is possible to work only
with the required commands adding them dynamically without leaving the Test Harness session.

Declaration of available plug-ins is done through the special resource file(s). The pload command loads the plug-in
in accordance with the specified resource file and activates the commands implemented in the plug-in.

1.3.1 Launching DRAW Test Harness

Test Harness executable DRAWEXE is located in the $CASROOT/< platform>/bin directory (where <platform> is
Win for Windows and Linux for Linux operating systems). Prior to launching it is important to make sure that the
environment is correctly setup (usually this is done automatically after the installation process on Windows or after
launching specific scripts on Linux).

1.3.2 Plug-in resource file

Open CASCADE Technology is shipped with the DrawPlugin resource file located in the $CASROOT/src/Draw«—
Resources directory.

The format of the file is compliant with standard Open CASCADE Technology resource files (see the Resource «
Manager.hxx file for details).

Each key defines a sequence of either further (nested) keys or a name of the dynamic library. Keys can be nested
down to an arbitrary level. However, cyclic dependencies between the keys are not checked.

Example: (excerpt from DrawPlugin):

OCAF : VISUALIZATION, OCAFKERNEL
VISUALIZATION : AISV

OCAFKERNEL : DCAF

DCAF : TKDCAF

AISV : TKViewerTest

1.3.3 Activation of commands implemented in the plug-in

To load a plug-in declared in the resource file and to activate the commands the following command must be used
in Test Harness:

pload [-PluginFileName] [[Keyl] [Key2]...]

where:

(c) Open CASCADE 2018

1.3 Getting started 19

* -PluginFileName — defines the name of a plug-in resource file (prefix "-" is mandatory) described above. If
this parameter is omitted then the default name DrawPlugin is used.

* Key — defines the key(s) enumerating plug-ins to be loaded. If no keys are specified then the key named
DEFAULT is used (if there is no such key in the file then no plug-ins are loaded).

According to the OCCT resource file management rules, to access the resource file the environment variable CSF«
_ PluginFileNameDefaults (and optionally CSF_PluginFileNameUserDefaults) must be set and point to the directory
storing the resource file. If it is omitted then the plug-in resource file will be searched in the $CASROOT/src/Draw«—
Resources directory.

Draw[] pload -DrawPlugin OCAF

This command will search the resource file DrawPlugin using variable CSF_DrawPluginDefaults (and CSF_Draw«
PluginUserDefaults) and will start with the OCAF key. Since the DrawPlugin is the file shipped with Open CASCA«
DE Technology it will be found in the $CASROOT/src/DrawResources directory (unless this location is redefined by
user's variables). The OCAF key will be recursively extracted into two toolkits/plug-ins: TKDCAF and TKViewer«
Test (e.g. on Windows they correspond to TKDCAF.dIl and TKViewerTest.dll). Thus, commands implemented for
Visualization and OCAF will be loaded and activated in Test Harness.

Draw/[] pload (equivalent to pload -DrawPlugin DEFAULT) .

This command will find the default DrawPlugin file and the DEFAULT key. The latter finally maps to the TKTopTest
toolkit which implements basic modeling commands.

(c) Open CASCADE 2018

2 The Command Language 20

2 The Command Language

2.1 Overview

The command language used in Draw is Tcl. Tcl documentation such as "TCL and the TK Toolkit" by John K.
Ousterhout (Addison-Wesley) will prove useful if you intend to use Draw extensively.

This chapter is designed to give you a short outline of both the TCL language and some extensions included in
Draw. The following topics are covered:

+ Syntax of the TCL language.

 Accessing variables in TCL and Draw.

« Control structures.

* Procedures.

2.2 Syntax of TCL

TCL is an interpreted command language, not a structured language like C, Pascal, LISP or Basic. It uses a shell
similar to that of csh. TCL is, however, easier to use than csh because control structures and procedures are easier
to define. As well, because TCL does not assign a process to each command, it is faster than csh.

The basic program for TCL is a script. A script consists of one or more commands. Commands are separated by
new lines or semicolons.

ot

a 24
b 15
a 25; set b 15

n n n
® O O
t

Each command consists of one or more words; the first word is the name of a command and additional words are
arguments to that command.

Words are separated by spaces or tabs. In the preceding example each of the four commands has three words. A
command may contain any number of words and each word is a string of arbitrary length.

The evaluation of a command by TCL is done in two steps. In the first step, the command is parsed and broken
into words. Some substitutions are also performed. In the second step, the command procedure corresponding
to the first word is called and the other words are interpreted as arguments. In the first step, there is only string
manipulation, The words only acquire meaning in the second step by the command procedure.

The following substitutions are performed by TCL:

Variable substitution is triggered by the $ character (as with csh), the content of the variable is substitued; { } may
be used as in csh to enclose the name of the variable.

Example:

set a variable value

set file documentation

puts $file #to display file contents on the screen

a simple substitution, set psfile to documentation.ps
set psfile $file.ps

puts Spsfile

another substitution, set pfile to documentationP$S
set pfile ${file}PS

a last one,
delete files NEWdocumentation and OLDdocumentation
foreach prefix {NEW OLD} {rm $prefix$file}

Command substitution is triggered by the [] characters. The brackets must enclose a valid script. The script is
evaluated and the result is substituted.

(c) Open CASCADE 2018

2.2 Syntax of TCL 21

Compare command construction in csh.

Example:

set degree 30
set pi 3.14159265

expr is a command eva

ating a numeric expression
ree/180]

set radian [expr $pixS$de
Backslash substitution is triggered by the backslash character. It is used to insert special characters like $, [,], etc.
It is also useful to insert a new line, a backslash terminated line is continued on the following line.

TCL uses two forms of quoting to prevent substitution and word breaking.

Double quote quoting enables the definition of a string with space and tabs as a single word. Substitutions are still

performed inside the inverted commas " ".

Example:

set msg to ;the price is 12.00;

set price 12.00
set msg ;the price is S$price;

Braces quoting prevents all substitutions. Braces are also nested. The main use of braces is to defer evaluation
when defining procedures and control structures. Braces are used for a clearer presentation of TCL scripts on
several lines.

Example:

will loop for ever

e while argument is ;0 < 3;

while ;$x < 3; {set x [expr $x+1]}

this will terminate as expected because
while argument is {$x < 3}

while {$x < 3} {set x [expr $x+1]}

this can be written also

{$x < 3} {
set x [expr $x+1]

wing cannot be written
while requires two arguments
{$x < 3}

set x [expr $x+1]
}

Comments start with a # character as the first non-blank character in a command. To add a comment at the end of
the line, the comment must be preceded by a semi-colon to end the preceding command.

Example:

S 1s a comment
this is not a comment
; # this is a comment

The number of words is never changed by substitution when parsing in TCL. For example, the result of a substitution
is always a single word. This is different from csh but convenient as the behavior of the parser is more predictable.
It may sometimes be necessary to force a second round of parsing. eval accomplishes this: it accepts several
arguments, concatenates them and executes the resulting script.

Example:

I want to delete two files
set files ;foo bar;

this will fail because rm will receive only one argument
and complain that ;foo bar; does not exit

exec rm S$files

a second evaluation will do it

(c) Open CASCADE 2018

2.3 Accessing variables in TCL and Draw 22

2.3 Accessing variables in TCL and Draw

TCL variables have only string values. Note that even numeric values are stored as string literals, and computations
using the expr command start by parsing the strings. Draw, however, requires variables with other kinds of values
such as curves, surfaces or topological shapes.

TCL provides a mechanism to link user data to variables. Using this functionality, Draw defines its variables as TCL
variables with associated data.

The string value of a Draw variable is meaningless. It is usually set to the name of the variable itself. Consequently,
preceding a Draw variable with a $ does not change the result of a command. The content of a Draw variable is
accessed using appropriate commands.

There are many kinds of Draw variables, and new ones may be added with C++. Geometric and topological variables
are described below.

Draw numeric variables can be used within an expression anywhere a Draw command requires a numeric value.
The expr command is useless in this case as the variables are stored not as strings but as floating point values.

Example:

dset is us

or numeric variables

pl is a pre ined Draw variable

dset angle pi/3 radius 10

point p radiusxcos(angle) radiusxsin(angle) 0

It is recommended that you use TCL variables only for strings and Draw for numerals. That way, you will avoid the
expr command. As a rule, Geometry and Topology require numbers but no strings.

2.3.1 set, unset

Syntax:

set varname [value]

unset varname [varname varname ...]

set assigns a string value to a variable. If the variable does not already exist, it is created.
Without a value, set returns the content of the variable.

unset deletes variables. It is is also used to delete Draw variables.

Example:

set a "Hello world"
set b "Goodbye"

set a

== "Hello world"
unset a b

set a

Note, that the set command can set only one variable, unlike the dset command.

2.3.2 dset, dval

Syntax

dset varl valuel vr2 value2 ...
dval name

dset assigns values to Draw numeric variables. The argument can be any numeric expression including Draw
numeric variables. Since all Draw commands expect a numeric expression, there is no need to use $ or expr.
The dset command can assign several variables. If there is an odd number of arguments, the last variable will be
assigned a value of 0. If the variable does not exist, it will be created.

(c) Open CASCADE 2018

2.4 lists 23

dval evaluates an expression containing Draw numeric variables and returns the result as a string, even in the case
of a single variable. This is not used in Draw commands as these usually interpret the expression. It is used for
basic TCL commands expecting strings.

Example:

z is set to O

dset x 10 y 15 z
=0
no $ required for Draw commands

point p x y z

i

"puts" prints a string
puts ;x = [dval x], cos(x/pi) = [dval cos(x/pi)];
== x = 10, cos(x/pi) = -0.99913874099467914

Note, that in TCL, parentheses are not considered to be special characters. Do not forget to quote an expression if
it contains spaces in order to avoid parsing different words. (a + b) is parsed as three words: "(a + b)" or (a+b) are
correct.

2.3.3 del, dall
Syntax:

del varname_pattern [varname_pattern ...]
dall

del command does the same thing as unset, but it deletes the variables matched by the pattern.

dall command deletes all variables in the session.

2.4 lists

TCL uses lists. A list is a string containing elements separated by spaces or tabs. If the string contains braces, the
braced part accounts as one element.

This allows you to insert lists within lists.

Example:
a list of 3 strings
;a b c;
of two strings the first is a list of 2

a lis
;

{a b} c;

)

Many TCL commands return lists and foreach is a useful way to create loops on list elements.

2.4.1 Control Structures

TCL allows looping using control structures. The control structures are implemented by commands and their syntax
is very similar to that of their C counterparts (if, while, switch, etc.). In this case, there are two main differences
between TCL and C:

» You use braces instead of parentheses to enclose conditions.

* You do not start the script on the next line of your command.

(c) Open CASCADE 2018

2.4 lists 24

242 if
Syntax

if condition script [elseif script else script]

If evaluates the condition and the script to see whether the condition is true.

Example:

{$x > 0} {
puts ;positive;
} elseif {$x == 0} {
puts ;null;
}oels {
puts ;negative;
}

2.4.3 while, for, foreach
Syntax:

while condition script
for init condition reinit script
foreach varname list script

The three loop structures are similar to their C or csh equivalent. It is important to use braces to delay evaluation.
foreach will assign the elements of the list to the variable before evaluating the script. \

Example:

while example

dset x 1.1
hile {[dval x] < 100} {
circle ¢ 0 0 x
dset x x*x

=

for example

incr var d, increments a variable of d (default 1)
f {set 1 0} {$1i < 10} {incr i} {

dset angle $ixpi/10

point p$i cos(angle0 sin(angle) 0

foreach example
fe [object {crapo tomson lucas} {display $object}

2.4.4 break, continue
Syntax:

break
continue

Within loops, the break and continue commands have the same effect as in C.

break interrupts the innermost loop and continue jumps to the next iteration.

Example:
search the index for which t$i has value ;secret;
for {set i 1} {$i <= 100} {incr i} {

¢ {[set t$i] == ;secret;} break;

(c) Open CASCADE 2018

2.5 Procedures 25

2.5 Procedures

TCL can be extended by defining procedures using the proc command, which sets up a context of local variables,
binds arguments and executes a TCL script.

The only problematic aspect of procedures is that variables are strictly local, and as they are implicitly created when
used, it may be difficult to detect errors.

There are two means of accessing a variable outside the scope of the current procedures: global declares a global
variable (a variable outside all procedures); upvar accesses a variable in the scope of the caller. Since arguments
in TCL are always string values, the only way to pass Draw variables is by reference, i.e. passing the name of the
variable and using the upvar command as in the following examples.

As TCL is not a strongly typed language it is very difficult to detect programming errors and debugging can be
tedious. TCL procedures are, of course, not designed for large scale software development but for testing and
simple command or interactive writing.

25.1 proc
Syntax:

proc argumentlist script

proc defines a procedure. An argument may have a default value. It is then a list of the form {argument value}. The
script is the body of the procedure.

return gives a return value to the procedure.

Example:

simple procedure
proc hello {} {
puts ;hello world;
}
procedure with arguments and default values
proc distance {x1 yl {x2 0} {y2 0}} {
set d [expr (x2-x1)«*(x2-x1) + (y2-yl)x(y2-yl)]
return [expr sqrt (d)
}
proc fact n {
{$n == 0} { rn 1} el {
eturn [expr nx[fact [expr n -1]11]

2.5.2 global, upvar
Syntax:

global varname [varname ...]
upvar varname localname [varname localname ...]

global accesses high level variables. Unlike C, global variables are not visible in procedures.

upvar gives a local name to a variable in the caller scope. This is useful when an argument is the name of a variable
instead of a value. This is a call by reference and is the only way to use Draw variables as arguments.

Note that in the following examples the $ character is always necessarily used to access the arguments.

Example:

convert degree to radian
n

pi is a global variable
proc deg2rad (degree} {

rn [dval pix$degree/2.]
}

create line with a point and an angle

(c) Open CASCADE 2018

2.5 Procedures

26

proc linang {linename x y angle} {

upvar linename 1
line 1 $x $y cos($angle)
}

sin($angle)

(c) Open CASCADE 2018

3 Basic Commands 27

3 Basic Commands

This chapter describes all the commands defined in the basic Draw package. Some are TCL commands, but most
of them have been formulated in Draw. These commands are found in all Draw applications. The commands are
grouped into four sections:

« General commands, which are used for Draw and TCL management.

+ Variable commands, which are used to manage Draw variables such as storing and dumping.

» Graphic commands, which are used to manage the graphic system, and so pertain to views.

+ Variable display commands, which are used to manage the display of objects within given views.

Note that Draw also features a GUI task bar providing an alternative way to give certain general, graphic and display
commands

3.1 General commands

This section describes several useful commands:

* help to get information,

+ source to eval a script from a file,

spy to capture the commands in a file,

cpulimit to limit the process cpu time,

« wait to waste some time,

chrono to time commands.

3.1.1 help
Syntax:

help [command [helpstring group]]

Provides help or modifies the help information.
help without arguments lists all groups and the commands in each group.

Specifying the command returns its syntax and in some cases, information on the command, The joker * is auto-
matically added at the end so that all completing commands are returned as well.

Example:

Gives help on all commands starting with xax

3.1.2 source
Syntax:

source filename

Executes a file.

The exit command will terminate the file.

(c) Open CASCADE 2018

3.1 General commands 28

3.1.3 spy

Syntax:

spy [filename]

Saves interactive commands in the file. If spying has already been performed, the current file is closed. spy without
an argument closes the current file and stops spying. If a file already exists, the file is overwritten. Commands are
not appended.

If a command returns an error it is saved with a comment mark.
The file created by spy can be executed with the source command.

Example:

all commands will be saved in the file ;session;
spy session
the file ;

spy

on; s closed and commands are not saved

3.1.4 cpulimit
Syntax:

cpulimit [nbseconds]

cpulimit«xlimits a process after the number of seconds specified in nbseconds. It is used in tests to avoid
infinite loops. *xcpulimit without arguments removes all existing limits.

Example:

#limit cpu to one hour
cpulimit 3600

3.1.5 wait
Syntax:

wait [nbseconds]

Suspends execution for the number of seconds specified in nbseconds. The default value is ten (10) seconds. This
is a useful command for a slide show.

You have ten seconds ...
wait

3.1.6 chrono
Syntax:

chrono [name start/stop/reset/show/restart/[counter text]]

Without arguments, chrono activates Draw chronometers. The elapsed time ,cpu system and cpu user times for
each command will be printed.

With arguments, chrono is used to manage activated chronometers. You can perform the following actions with a
chronometer.

* run the chronometer (start).

(c) Open CASCADE 2018

3.2 Variable management commands

29

« stop the chronometer (stop).
* reset the chronometer to 0 (reset).
+ restart the chronometer (restart).

« display the current time (show).

« display the current time with specified text (output example - COUNTER text: N), command testdiff will com-

pare such outputs between two test runs (counter).

Example:

chrono

==Chronometers activated.

ptorus t 20 5

==Elapsed time: 0 Hours 0 Minutes 0.0318 Seconds
==CPU user time: 0.0l seconds

==CPU system time: 0 seconds

3.2 Variable management commands
3.2.1 isdraw, directory

Syntax:

isdraw varname
directory [pattern]

isdraw tests to see if a variable is a Draw variable. isdraw will return 1 if there is a Draw value attached to the

variable.
Use directory to return a list of all Draw global variables matching a pattern.

Example:

set a1
isdraw a

dset a 1
isdraw a

circle ¢ 0 01 05
isdraw c
=== 1

to destroy all Draw objects with name containing curve

foreach var [directory =*curvex] {unset $var}

3.2.2 whatis, dump

Syntax:

whatis varname [varname ...]
dump varname [varname ...]

whatis returns short information about a Draw variable. This is usually the type name.

dump returns a brief type description, the coordinates, and if need be, the parameters of a Draw variable.

Example:

circle ¢ 0 01 0 5
whatis c
c is a 2d curve

(c) Open CASCADE 2018

3.2 Variable management commands 30

dump c

* kK k Kk Dump Of C *****
Circle

Center :0, O

XAxis :1, 0

YAxis :-0, 1

Radius :5

Note The behavior of whatis on other variables (not Draw) is not excellent.

3.2.3 renamevar, copy
Syntax:

renamevar varname tovarname [varname tovarname ...]
copy varname tovarname [varname tovarname ...]

* renamevar changes the name of a Draw variable. The original variable will no longer exist. Note that the
content is not modified. Only the name is changed.

+ copy creates a new variable with a copy of the content of an existing variable. The exact behavior of copy is
type dependent; in the case of certain topological variables, the content may still be shared.

Example:

circle c1 0 0 1 0 5
renamevar cl c2
curves are copied, c2 will not be modified

copy c2 c3

3.2.4 datadir, save, restore
Syntax:

datadir [directory]
save variable [filename]
restore filename [variablename]

« datadir without arguments prints the path of the current data directory.

« datadir with an argument sets the data directory path. \
If the path starts with a dot (.) only the last directory name will be changed in the path.

+ save writes a file in the data directory with the content of a variable. By default the name of the file is the
name of the variable. To give a different name use a second argument.

« restore reads the content of a file in the data directory in a local variable. By default, the name of the variable

is the name of the file. To give a different name, use a second argument.

The exact content of the file is type-dependent. They are usually ASCII files and so, architecture independent.

Example:

note how TCL accesses shell environment variables
using Senv ()
datadir

datadir $env (WBCONTAINER) /data/defaul
==/adv_20/BAG/data/defaul

(c) Open CASCADE 2018

3.3 User defined commands 31

box b 10 20 30
save b theBox
==/adv_20/BAG/data/default/theBox

when TCL does not find a command it tries a shell command
ls [datadir]

== theBox

restore theBox
== theBox

3.3 User defined commands

DrawTrSurf provides commands to create and display a Draw geometric variable from a Geom_Geometry object
and also get a Geom_Geometry object from a Draw geometric variable name.

DBRep provides commands to create and display a Draw topological variable from a TopoDS_Shape object and
also get a TopoDS_Shape object from a Draw topological variable name.

3.3.1 set

In DrawTrSurf package:

void Set (Standard_CStringé& Name,const gp_Pnté& G) ;
void Set (Standard_CStringé& Name,const gp_Pnt2d& G) ;
void Set (Standard_CStringé& Name,

const Handle (Geom_Geometry) & G) ;

void Set (Standard_CStringé& Name,

const Handle (Geom2d_Curve)& C) ;

void Set (Standard_CStringé& Name,

const Handle (Poly_Triangulation)& T) ;

void Set (Standard_CString& Name,

const Handle (Poly_Polygon3D)& P) ;

void Set (Standard_CStringé& Name,

const Handle (Poly_Polygon2D)& P) ;

In DBRep package:

void Set (const Standard_CString Name,
const TopoDS_Shape& S) ;

Example of DrawTrSurf

Handle (Geom2d_Circle) Cl = new Geom2d_Circle
(gce_MakeCirc2d (gp_Pnt2d(50,0,) 25));
DrawTrSurf::Set (charx, Cl);

Example of DBRep

TopoDS_Solid B;
B = BRepPrimAPI_MakeBox (10,10,10);
DBRep: :Set (charx,B);

3.3.2 get

In DrawTrSurf package:

Handle_Geom_Geometry Get (Standard_CString& Name) ;

In DBRep package:

TopoDS_Shape Get (Standard_CStringé& Name,
const TopAbs_ShapeEnum Typ = TopAbs_SHAPE,
const Standard_Boolean Complain

= Standard_True) ;

Example of DrawTrSurf

(c) Open CASCADE 2018

3.3 User defined commands

32

Standard_Integer MyCommand
(Draw_Interpretor& theCommands,
Standard_Integer argc, charx*x argv)

// Creation of a Geom_Geometry from a Draw geometric

// name

Handle (Geom_Geometry) aGeom= DrawTrSurf::Get (argv[1l]);
}

Example of DBRep

Standard_Integer MyCommand
(Draw_Interpretor& theCommands,
Standard_Integer argc, charxx argv)

// Creation of a TopoDS_Shape from a Draw topological
// name

TopoDS_Solid B = DBRep::Get (argv[1l]);

}

(c) Open CASCADE 2018

4 Graphic Commands 33

4 Graphic Commands

Graphic commands are used to manage the Draw graphic system. Draw provides a 2d and a 3d viewer with up to
30 views. Views are numbered and the index of the view is displayed in the window’s title. Objects are displayed in
all 2d views or in all 3d views, depending on their type. 2d objects can only be viewed in 2d views while 3d objects
—only in 3d views correspondingly.

4.1 Axonometric viewer
4.1.1 view, delete
Syntax:

view index type [X Y W H]
delete [index]

view is the basic view creation command: it creates a new view with the given index. If a view with this index already
exits, it is deleted. The view is created with default parameters and X Y W H are the position and dimensions of the
window on the screen. Default values are 0, 0, 500, 500.

As arule it is far simpler either to use the procedures axo, top, left or to click on the desired view type in the menu
under Views in the task bar..

delete deletes a view. If no index is given, all the views are deleted.

Type selects from the following range:

AXON : Axonometric view

PERS : Perspective view
» +X+Y: View on both axes (i.e. a top view), other codes are -X+Y, +Y-Z, etc.

o -2D-: 2d view

The index, the type, the current zoom are displayed in the window title .

Example:

this is the content of the mud4 procedure
proc mud {} {

delete

view 1 +X+Z 320 20 400 400

view 2 +X+Y 320 450 400 400

view 3 +Y+Z 728 20 400 400

view 4 AXON 728 450 400 400

}

See also: axo, pers, top, bottom, left, right, front, back, mu4, v2d, av2d, smallview

41.2 axo, pers, top, ...
Syntax:
axo

pers

smallview type

All these commands are procedures used to define standard screen layout. They delete all existing views and
create new ones. The layout usually complies with the European convention, i.e. a top view is under a front view.

(c) Open CASCADE 2018

4.1 Axonometric viewer 34

* axo creates a large window axonometric view;

+ pers creates a large window perspective view;

« top, bottom, left, right, front, back create a large window axis view;
« mu4 creates four small window views: front, left, top and axo.

» v2d creates a large window 2d view.

+ ava2d creates two small window views, one 2d and one axo

« smallview creates a view at the bottom right of the screen of the given type.

See also: view, delete

41.3 mu, md, 2dmu, 2dmd, zoom, 2dzoom
Syntax:

mu [index] wvalue
2dmu [index] value
zoom [index] value
wzoom

+ mu (magnify up) increases the zoom in one or several views by a factor of 10%.

» md (magnify down) decreases the zoom by the inverse factor. 2dmu and 2dmd perform the same on one or
all 2d views.

+ zoom and 2dzoom set the zoom factor to a value specified by you. The current zoom factor is always
displayed in the window’s title bar. Zoom 20 represents a full screen view in a large window; zoom 10, a full
screen view in a small one.

* wzoom (window zoom) allows you to select the area you want to zoom in on with the mouse. You will be
prompted to give two of the corners of the area that you want to magnify and the rectangle so defined will
occupy the window of the view.

Example:

set a zoom of 2.5

zoom 2.5

magnify by 10%

mu 1

magnify by 20%

See also: fit, 2dfit

41.4 pu, pd, pl, pr, 2dpu, 2dpd, 2dpl, 2dpr
Syntax:

pu [index]
pd [index]

The p_ commands are used to pan. pu and pd pan up and down respectively; pl and pr pan to the left and to the
right respectively. Each time the view is displaced by 40 pixels. When no index is given, all views will pan in the
direction specified.

(c) Open CASCADE 2018

4.1 Axonometric viewer 35

you have selected one anonometric view

pu

or

pu 1

you have selected an mud4 view; the object in the third view will pan up
pu 3

See also: fit, 2dfit

4.1.5 fit, 2dfit
Syntax:

fit [index]
2dfit [index]

fit computes the best zoom and pans on the content of the view. The content of the view will be centered and fit the
whole window.

When fitting all views a unique zoom is computed for all the views. All views are on the same scale.

Example:

fit only view 1
fit 1

fit all 2d views
2dfit

See also: zoom, mu, pu

41.6 u,d,Lr
Syntax:

[index
[index
[index
[index

B Qo c

]
]
]
]

u, d, I, r Rotate the object in view around its axis by five degrees up, down, left or right respectively. This command
is restricted to axonometric and perspective views.

Example:

rotate the view up

u

41.7 focal, fu, fd

Syntax:

focal [f]
fu [index]
fd [index]

« focal changes the vantage point in perspective views. A low f value increases the perspective effect; a high
one give a perspective similar to that of an axonometric view. The default value is 500.

+ fu and fd increase or decrease the focal value by 10%. fd makes the eye closer to the object.

Example:

(c) Open CASCADE 2018

4.1 Axonometric viewer 36

pers
repeat 10 fd

Note: Do not use a negative or null focal value.

See also: pers
4.1.8 color
Syntax:

color index name

color sets the color to a value. The index of the color is a value between 0 and 15. The name is an X window color
name. The list of these can be found in the file rgb.txt in the X library directory.

The default values are: 0 White, 1 Red, 2 Green, 3 Blue, 4 Cyan, 5 Gold, 6 Magenta, 7 Marron, 8 Orange, 9 Pink,
10 Salmon, 11 Violet, 12 Yellow, 13 Khaki, 14 Coral.

Example:
change the value of blue
color 3 "navy blue"

Note that the color change will be visible on the next redraw of the views, for example, after fit or mu, etc.

41.9 dtext

Syntax:

dtext [x y [z]] string

dtext displays a string in all 3d or 2d views. If no coordinates are given, a graphic selection is required. If two
coordinates are given, the text is created in a 2d view at the position specified. With 3 coordinates, the text is
created in a 3d view.

The coordinates are real space coordinates.

Example:

mark the origins

dtext 0 0 bebop
dtext 0 0 O bebop

4.1.10 hardcopy, hcolor, xwd

Syntax:

hardcopy [index]
hcolor index width gray
xwd [index] filename

» hardcopy creates a postcript file called a4.ps in the current directory. This file contains the postscript de-
scription of the view index, and will allow you to print the view.

* hcolor lets you change the aspect of lines in the postscript file. It allows to specify a width and a gray level
for one of the 16 colors. width is measured in points with default value as 1, gray is the gray level from 0 =
black to 1 = white with default value as 0. All colors are bound to the default values at the beginning.

» xwd creates an X window xwd file from an active view. By default, the index is set to1. To visualize an xwd
file, use the unix command xwud.

(c) Open CASCADE 2018

4.1 Axonometric viewer 37

Example:

I
i

all blue lines (color 3)
will be half-width and gray

hcolor 3 0.5

=+

make a postscript file a print it
hardcopy

lpr a4.ps

make an xwd file and display it

xwd theview
xwud —-in theview

Note: When more than one view is present, specify the index of the view.
Only use a postscript printer to print postscript files.

See also: color

41.11 welick, pick
Syntax:

wclick
pick index X Y Z b [nowait]
wclick defers an event until the mouse button is clicked. The message just click is displayed.

Use the pick command to get graphic input. The arguments must be names for variables where the results are
stored.

* index: index of the view where the input was made.
* X,Y,Z: 3d coordinates in real world.

* b: bis the mouse button 1,2 or 3.

When there is an extra argument, its value is not used and the command does not wait for a click; the value of b
may then be 0 if there has not been a click.

This option is useful for tracking the pointer.
Note that the results are stored in Draw numeric variables.

Example:

make a circle at mouse location

pick index x y z b
circle c x y 2z 0011000 30

Es

make a dynamic circle at mouse location
N a to clicked
see the repaint command)

stop

+ H

dset b 0
while {[dval b] == 0} {

pick index x y z b nowait
circle c x y 2z 0011000 30
repaint

}

See also: repaint

Draw provides commands to manage the display of objects.

« display, donly are used to display,

» erase, clear, 2dclear to erase.

(c) Open CASCADE 2018

4.1 Axonometric viewer 38

« autodisplay command is used to check whether variables are displayed when created.

The variable name "." (dot) has a special status in Draw. Any Draw command expecting a Draw object as argument
can be passed a dot. The meaning of the dot is the following.

« If the dot is an input argument, a graphic selection will be made. Instead of getting the object from a variable,
Draw will ask you to select an object in a view.

« If the dot is an output argument, an unnamed object will be created. Of course this makes sense only for
graphic objects: if you create an unnamed number you will not be able to access it. This feature is used when
you want to create objects for display only.

+ If you do not see what you expected while executing loops or sourcing files, use the repaint and dflush
commands.

Example:

OK use dot to dump an object on the screen
dump .

point . x vy z

#Not OK. display points on a curve c
with dot no variables are created
f {set 1 0} {$1i <= 10} {incr i} {
cvalue ¢ $i/10 x y z

point . xy z

}

=+

point p x y 2z
would i layed c
because the precedent variable content is erased

ly one point

=

point p$i x y z
is an other solution, creating variables
p0, pl, p2,

+ H

==

> to a graphic object

4112 autodisplay
Syntax:

autodisplay [0/1]

By default, Draw automatically displays any graphic object as soon as it is created. This behavior known as autodis-
play can be removed with the command autodisplay. Without arguments, autodisplay toggles the autodisplay
mode. The command always returns the current mode.

When autodisplay is off, using the dot return argument is ineffective.

Example:

¢ is displayed

circle ¢ 0 01 0 5
toggle the mode
autodisplay

== 0

circle ¢ 0 01 0 5

¢ is erased, but not displayed
display c

41.13 display, donly

Syntax:

(c) Open CASCADE 2018

4.1 Axonometric viewer 39

display varname [varname ...]
donly varname [varname ...]

 display makes objects visible.
» donly display only makes objects visible and erases all other objects. It is very useful to extract one object

from a messy screen.

Example:

\# to see all objects
var [directory] {display S$var}

\# to select two objects and erase the other ones
donly . .

4.1.14 erase, clear, 2dclear

Syntax:

erase [varname varname ...]
clear
2dclear

erase removes objects from all views. erase without arguments erases everything in 2d and 3d.
clear erases only 3d objects and 2dclear only 2d objects. erase without arguments is similar to clear; 2dclear.
Example:

erase eveerything with a name starting with c_

var [directory c_x] {erase $var}

clear 2d views

2dclear

41.15 disp, don, era

These commands have the same meaning as correspondingly display, donly and erase, but with the difference that
they evaluate the arguments using glob pattern rules. For example, to display all objects with names d_1,d_2, d_3,
etc. it is enouth to run the command:

disp d_«

4.1.16 repaint, dflush

Syntax:

repaint
dflush

* repaint forces repainting of views.

+ dflush flushes the graphic buffers.

These commands are useful within loops or in scripts.

When an object is modified or erased, the whole view must be repainted. To avoid doing this too many times, Draw
sets up a flag and delays the repaint to the end of the command in which the new prompt is issued. In a script, you
may want to display the result of a change immediately. If the flag is raised, repaint will repaint the views and clear
the flag.

Graphic operations are buffered by Draw (and also by the X system). Usually the buffer is flushed at the end of a
command and before graphic selection. If you want to flush the buffer from inside a script, use the dflush command.

See also: pick command.

(c) Open CASCADE 2018

4.2 AIS viewer -- view commands 40

4.2 AIS viewer -- view commands
421 vinit

Syntax:

vinit

Creates a new View window with the specified view_name. By default the view is created in the viewer and in the
graphic driver shared with the active view.

name = {driverName/viewerName/viewName | viewerName/viewName | viewName}

If driverName is not specified the driver will be shared with the active view. If viewerName is not specified the viewer
will be shared with the active view.

4,22 vhelp
Syntax:

vhelp

Displays help in the 3D viewer window. The help consists in a list of hotkeys and their functionalities.

423 vtop
Syntax:

vtop

Displays top view in the 3D viewer window. Orientation +X+Y.
Example:

vinit

box b 10 10 10

vdisplay b

viit
vtop

424 vaxo
Syntax:

vaxo

Displays axonometric view in the 3D viewer window. Orientation +X-Y+Z.

Example:

vinit

box b 10 10 10
vdisplay b
viit

vaxo

(c) Open CASCADE 2018

4.2 AIS viewer -- view commands

1

425 vsethg
Syntax:

vsetbg imagefile [filltype]

Loads image file as background. filltype must be NONE, CENTERED, TILED or STRETCH.

Example:

vinit
vsetbg myimage.brep CENTERED

4.2.6 vclear
Syntax:

vclear

Removes all objects from the viewer.

4.2.7 vrepaint
Syntax:

vrepaint

Forcibly redisplays the shape in the 3D viewer window.

4.2.8 fit
Syntax:

viit

Automatic zoom/panning. Objects in the view are visualized to occupy the maximum surface.

429 vzfit
Syntax:

vzfit

Automatic depth panning. Objects in the view are visualized to occupy the maximum 3d space.

4.2.10 vreadpixel
Syntax:

vreadpixel xPixel yPixel [{rgb|rgbal|depth|hls|rgbf|rgbaf}=rgbal [name]

Read pixel value for active view.

(c) Open CASCADE 2018

4.2 AIS viewer -- view commands 42

4211 vselect

Syntax:

vselect x1 yl [x2 y2 [x3 y3 ... xn yn]] [-allowoverlap 0|1] [shift_selection = 0]1]
Emulates different types of selection:

+ single mouse click selection
+ selection with a rectangle having the upper left and bottom right corners in (x1,y7) and (x2,y2) respectively
+ selection with a polygon having the corners in pixel positions (x1,y1), (x2,y2),. .., (xn,yn)

+ -allowoverlap manages overlap and inclusion detection in rectangular selection. If the flag is set to 1, both
sensitives that were included completely and overlapped partially by defined rectangle will be detected, oth-
erwise algorithm will chose only fully included sensitives. Default behavior is to detect only full inclusion.

+ any of these selections if shift_selection is set to 1.

4212 vmoveto

Syntax:

vmoveto x y

Emulates cursor movement to pixel position (x,y).

4213 vviewparams

Syntax:

vviewparams [-scale [s]] [-eye [x y z]] [-at [x vy z]] [-up [x y z]] [-proj [x y z]] [-center x y] [-size
sx]

Gets or sets the current view parameters.

« If called without arguments, all view parameters are printed.
» The options are:

« -scale [s] : prints or sets the relative scale of viewport.

» -eye [xy z] : prints or sets the eye location.

« -at [xy z] : prints or sets the view center.

* -up [xy z] : prints or sets the up vector direction.

* -proj [x y z] : prints or sets the view direction.

» -center x y : sets the screen center location in pixels.

+ -size [sx] : prints viewport projection width and height sizes or changes the size of its maximum dimension.

4.2.14 vchangeselected

Syntax:

vchangeselected shape

Adds a shape to selection or removes one from it.

(c) Open CASCADE 2018

4.2 AIS viewer -- view commands 43

4.2.15 vzclipping

Syntax:

vzclipping [mode] [depth width]

Gets or sets ZClipping mode, width and depth, where

* mode = OFF|BACK|FRONT|SLICE
» depthis a real value from segment [0,1]

» width is a real value from segment [0,1]
4.2.16 vnbselected
Syntax:
vnbselected

Returns the number of selected objects in the interactive context.

4.217 vpurgedisplay
Syntax:

vpurgedisplay [CollectorToo = 0]1]

Removes structures which do not belong to objects displayed in neutral point.

4.2.18 vhlir

Syntax:

vhlr is_enabled={on|off} [show_hidden={1]0}]
Hidden line removal algorithm:

* is_enabled applies HLR algorithm.

» show_hidden if equals to 1, hidden lines are drawn as dotted ones.

4219 vhlrtype
Syntax:

vhlrtype algo_type={algo|polyalgo} [shape_1 ... shape_n]

Changes the type of HLR algorithm used for shapes. If the algo_type is algo, the exact HLR algorithm is used,
otherwise the polygonal algorithm is used for defined shapes.

If no shape is specified through the command arguments, the given HLR algorithm_type is applied to all AIS_Shape
isntances in the current context, and the command also changes the default HLR algorithm type.

Note that this command works with instances of AIS_Shape or derived classes only, other interactive object types
are ignored.

(c) Open CASCADE 2018

4.2 AIS viewer -- view commands

44

4.2.20 vcamera

Syntax:
vcamera [-ortho] [-projtypel
[-persp]
[-fovy [Angle]] [-distance [Distance]
[-stereo] [-leftEyel] [-rightEyel]
[-iod [Distance]] [-iodType [absolute|relative]]
[-zfocus [Value]] [-zfocusType [absolute|relative]]

Manages camera parameters. Prints the current value when the option is called without argument.

Orthographic camera:
+ -ortho — activates orthographic projection.
Perspective camera:

+ -persp — activated perspective projection (mono);
« -fovy — field of view in y axis, in degrees;

« -distance — distance of eye from the camera center.
Stereoscopic camera:

« -stereo — perspective projection (stereo);

+ -leftEye — perspective projection (left eye);

« -rightEye — perspective projection (right eye);
+ -iod — intraocular distance value;

+ -iodType — distance type, absolute or relative;
« -zfocus — stereographic focus value;

» -zfocusType — focus type, absolute or relative.

Example:

vinit

box b 10 10 10
vdisplay b
viit

vcamera -persp

4.2.21 vstereo

Syntax:

vstereo [0|1] [-mode Mode] [-reverse {0|1}] [-anaglyph Filter]
Defines the stereo output mode. The following modes are available:

» quadBuffer — OpenGL QuadBuffer stereo, requires driver support. Should be called BEFORE vinit!
 anaglyph — Anaglyph glasses;
» rowlnterlaced — row-interlaced display;

+ columninterlaced — column-interlaced display;

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands

45

» chessBoard — chess-board output;

+ sideBySide — horizontal pair;

 overUnder — vertical pair; Available Anaglyph filters for -anaglyph:

 redCyan, redCyanSimple, yellowBlue, yellowBlueSimple, greenMagentaSimple.

Example:

vinit

box b 10 10 10
vdisplay b

vstereo 1

viit

vcamera -stereo -iod 1
vcamera -lefteye
vcamera -righteye

4.2.22 vfrustumculling

Syntax:

vfrustumculling [toEnable]

Enables/disables objects clipping.

4.3 AIS viewer -- display commands

[-trsfPers {pan|zoom|rotate|trihedron|full|none}=none]

431 vdisplay

Syntax:

vdisplay [-noupdate|-update] [-local] [-mutable]
[-dispMode mode] [-highMode mode]
[-layer index] [-top|-topmost|-overlay|-underlay]
[-redisplay]
namel [name2] ... [name n]

[-trsfPersPos X Y

[-3d|-2d|-2dTopDown]

Displays named objects. Option -local enables display of objects in the local selection context. Local selection

context will be opened if there is not any.

* noupdate suppresses viewer redraw call.
« mutable enables optimization for mutable objects.

* neutral draws objects in the main viewer.

- layer sets z-layer for objects. It can use -overlay|-underlay|-top|-topmost instead of -layer index for the default

z-layers.

« top draws objects on top of main presentations but below the topmost level.
 topmost draws in overlay for 3D presentations with independent Depth.

* overlay draws objects in overlay for 2D presentations (On-Screen-Display).
 underlay draws objects in underlay for 2D presentations (On-Screen-Display).

- selectable|-noselect controls selection of objects.

« trsfPers sets transform persistence flags. Flag full allows to pan, zoom and rotate.

« trsfPersPos sets an anchor point for transform persistence.

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands

46

« 2d|-2dTopDown displays object in screen coordinates.

 dispmode sets display mode for objects.
+ highmode sets highlight mode for objects.

* redisplay recomputes presentation of objects.

Example:

vinit

box b 40 40 40 10 10 10
psphere s 20

vdisplay s b

viit

4.3.2 vdonly

Syntax:

vdonly [-noupdate|-update] [namel] ... [name n]

Displays only selected or named objects. If there are no selected or named objects, nothing is done.

Example:

vinit

box b 40 40 40 10 10 10
psphere s 20

vdonly b
viit

4.3.3 vdisplayall

Syntax:

vdisplayall [-local]

Displays all erased interactive objects (see vdir and vstate). Option -local enables displaying objects in the local

selection context.

Example:

vinit

box b 40 40 40 10 10 10
psphere s 20

vdisplayall
vfit

43.4 verase

Syntax:

verase [namel] [name2] ... [name n]

Erases some selected or named objects. If there are no selected or named objects, the whole viewer is erased.

Example:

vinit

box bl 40 40 40 10 10 10

box b2 -40 -40 -40 10 10 10
psphere s 20

vdisplayall

viit

erase only first box

verase bl

erase second box and sphere
verase

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands

47

4.3.5 veraseall

Syntax:

veraseall

Erases all objects displayed in the viewer.

Example:

vinit

box bl 40 40 40 10 10 10

box b2 -40 -40 -40 10 10 10
psphere s 20

vdisplayall

viit

erase only first box

verase bl

erase second box and sphere
verseall

4.3.6 vsetdispmode

Syntax:

vsetdispmode [name] mode (0,1,2,3)

Sets display mode for all, selected or named objects.

* 0 (WireFrame),
+ 1(Shading),
* 2 (Quick HideLineremoval),

» 3 (Exact HideLineremoval).

Example:

vinit

box b 10 10 10
vdisplay b
vsetdispmode 1
viit

4.3.7 vdisplaytype

Syntax:

vdisplaytype type

Displays all objects of a given type. The following types are possible: Point, Axis, Trihedron, PlaneTrihedron, Line,
Circle, Plane, Shape, ConnectedShape, MultiConn.Shape, Connectedinter., MultiConn., Constraint and Dimension.

4.3.8 verasetype

Syntax:

verasetype type

Erases all objects of a given type. Possible type is Point, Axis, Trihedron, PlaneTrihedron, Line, Circle, Plane,

Shape, ConnectedShape, MultiConn.Shape, Connectedinter., MultiConn., Constraint and Dimension.

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands 48

4.3.9 vtypes

Syntax:

vtypes

Makes a list of known types and signatures in AlS.

4.3.10 vaspects

Syntax:

vaspects [-noupdate|-update] [namel [name2 [...]] | -defaults]
[-setVisibility 0[1]
[-setColor ColorName] [-setcolor R G B] [-unsetColor]
[-setMaterial MatName] [-unsetMaterial]
[-setTransparency Transp] [-unsetTransparency]
[-setWidth LineWidth] [-unsetWidth]
[-setLineType {solidl|dash|dot|dotDash}] [-unsetLineType]
[-freeBoundary {off/on | 0/1}]
[-setFreeBoundaryWidth Width] [-unsetFreeBoundaryWidth]
[-setFreeBoundaryColor {ColorName | R G B}] [-unsetFreeBoundaryColor]

[-subshapes subnamel [subname2 [...]]]
[-isoontriangulation 0]1]
[-setMaxParamValue {value}]

Manages presentation properties of all, selected or named objects.

» -subshapes — assigns presentation properties to the specified sub-shapes.

 -defaults — assigns presentation properties to all objects that do not have their own specified properties and
to all objects to be displayed in the future. If -defaults option is used there should not be any names of objects
and -subshapes specifier.

Aliases:

vsetcolor [-noupdatel|-update] [name] ColorName

Manages presentation properties (color, material, transparency) of all objects, selected or named.

Color. The ColorName can be: BLACK, MATRAGRAY, MATRABLUE, ALICEBLUE, ANTIQUEWHITE, ANTIQU«
EWHITE1, ANTIQUEWHITE2, ANTIQUEWHITES3, ANTIQUEWHITE4, AQUAMARINE1, AQUAMARINE2, AQUA«
MARINE4, AZURE, AZURE2, AZURE3, AZURE4, BEIGE, BISQUE, BISQUE2, BISQUES, BISQUE4, BLANCHE:-
DALMOND, BLUE1, BLUE2, BLUE3, BLUE4, BLUEVIOLET, BROWN, BROWN1, BROWN2, BROWN3, BROWNA4,
BURLYWOOD, BURLYWOOD1, BURLYWOOD2, BURLYWOOD3, BURLYWOOD4, CADETBLUE, CADETBLU:-
E1, CADETBLUE2, CADETBLUE3, CADETBLUE4, CHARTREUSE, CHARTREUSE1, CHARTREUSE2, CHAR«
TREUSE3, CHARTREUSE4, CHOCOLATE, CHOCOLATE1, CHOCOLATE2, CHOCOLATES3, CHOCOLATE4, C+~
ORAL, CORAL1, CORAL2, CORAL3, CORAL4, CORNFLOWERBLUE, CORNSILK1, CORNSILK2, CORNSILK3,
CORNSILK4, CYAN1, CYAN2, CYAN3, CYAN4, DARKGOLDENROD, DARKGOLDENROD1, DARKGOLDENR:-
OD2, DARKGOLDENROD3, DARKGOLDENROD4, DARKGREEN, DARKKHAKI, DARKOLIVEGREEN, DARKO:-
LIVEGREEN1, DARKOLIVEGREENZ2, DARKOLIVEGREENS3, DARKOLIVEGREEN4, DARKORANGE, DARKOR:-
ANGE1, DARKORANGE2, DARKORANGES3, DARKORANGE4, DARKORCHID, DARKORCHID1, DARKORCHI+
D2, DARKORCHID3, DARKORCHID4, DARKSALMON, DARKSEAGREEN, DARKSEAGREEN1, DARKSEAGR«
EEN2, DARKSEAGREEN3, DARKSEAGREEN4, DARKSLATEBLUE, DARKSLATEGRAY1, DARKSLATEGRAY?2,
DARKSLATEGRAY3, DARKSLATEGRAY4, DARKSLATEGRAY, DARKTURQUOISE, DARKVIOLET, DEEPPINK,
DEEPPINK2, DEEPPINK3, DEEPPINK4, DEEPSKYBLUE1, DEEPSKYBLUE2, DEEPSKYBLUES3, DEEPSKYB:-
LUE4, DODGERBLUE1, DODGERBLUE2, DODGERBLUES3, DODGERBLUE4, FIREBRICK, FIREBRICK1, FIR«
EBRICK2, FIREBRICKS, FIREBRICK4, FLORALWHITE, FORESTGREEN, GAINSBORO, GHOSTWHITE, GOLD,
GOLD1, GOLD2, GOLD3, GOLD4, GOLDENROD, GOLDENROD1, GOLDENROD2, GOLDENROD3, GOLDEN:-
ROD4, GRAY, GRAY0, GRAY1, GRAY10, GRAY11, GRAY12, GRAY13, GRAY14, GRAY15, GRAY16, GRAY17,
GRAY18, GRAY19, GRAY2, GRAY20, GRAY21, GRAY22, GRAY23, GRAY24, GRAY25, GRAY26, GRAYZ27,
GRAY28, GRAY29, GRAY3, GRAY30, GRAY31, GRAY32, GRAY33, GRAY34, GRAY35, GRAY36, GRAY37,

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands 49

GRAY38, GRAY39, GRAY4, GRAY40, GRAY41, GRAY42, GRAY43, GRAY44, GRAY45, GRAY46, GRAY47,
GRAY48, GRAY49, GRAY5, GRAY50, GRAY51, GRAY52, GRAY53, GRAY54, GRAY55, GRAY56, GRAY57,
GRAY58, GRAY59, GRAY6, GRAY60, GRAY61, GRAY62, GRAY63, GRAY64, GRAY65, GRAY66, GRAY67,
GRAY68, GRAY69, GRAY7, GRAY70, GRAY71, GRAY72, GRAY73, GRAY74, GRAY75, GRAY76, GRAY77,
GRAY78, GRAY79, GRAY8, GRAY80, GRAY81, GRAY82, GRAY83, GRAY85, GRAY86, GRAY87, GRAYSS,
GRAY89, GRAY9, GRAY90, GRAY91, GRAY92, GRAY93, GRAY94, GRAY95, GREEN, GREEN1, GREENZ2, G:-
REEN3, GREEN4, GREENYELLOW, GRAY97, GRAY98, GRAY99, HONEYDEW, HONEYDEW2, HONEYDEWS3,
HONEYDEWHA4, HOTPINK, HOTPINK1, HOTPINK2, HOTPINK3, HOTPINK4, INDIANRED, INDIANRED1, INDI-
ANREDZ2, INDIANREDS, INDIANREDA4, IVORY, IVORY2, IVORY3, IVORY4, KHAKI, KHAKI1, KHAKI2, KHAKI3,
KHAKI4, LAVENDER, LAVENDERBLUSH1, LAVENDERBLUSHZ2, LAVENDERBLUSH3, LAVENDERBLUSHA4, L+
AWNGREEN, LEMONCHIFFON1, LEMONCHIFFONZ2, LEMONCHIFFON3, LEMONCHIFFON4, LIGHTBLUE, L+
IGHTBLUE1, LIGHTBLUE2, LIGHTBLUES3, LIGHTBLUE4, LIGHTCORAL, LIGHTCYAN1, LIGHTCYANZ2, LIGH:
TCYANS, LIGHTCYAN4, LIGHTGOLDENROD, LIGHTGOLDENROD1, LIGHTGOLDENRODZ2, LIGHTGOLDEN«-
ROD3, LIGHTGOLDENROD4, LIGHTGOLDENRODYELLOW, LIGHTGRAY, LIGHTPINK, LIGHTPINK1, LIGH«
TPINK2, LIGHTPINK3, LIGHTPINK4, LIGHTSALMON1, LIGHTSALMONZ2, LIGHTSALMON3, LIGHTSALMONA4,
LIGHTSEAGREEN, LIGHTSKYBLUE, LIGHTSKYBLUE1, LIGHTSKYBLUE2, LIGHTSKYBLUE3, LIGHTSKYBL:-
UE4, LIGHTSLATEBLUE, LIGHTSLATEGRAY, LIGHTSTEELBLUE, LIGHTSTEELBLUET1, LIGHTSTEELBLUEZ2,
LIGHTSTEELBLUES, LIGHTSTEELBLUEA4, LIGHTYELLOW, LIGHTYELLOWZ2, LIGHTYELLOWS, LIGHTYELL«
OW4, LIMEGREEN, LINEN, MAGENTA1, MAGENTA2, MAGENTA3, MAGENTA4, MAROON, MAROON1, M
AROONZ2, MAROON3, MAROON4, MEDIUMAQUAMARINE, MEDIUMORCHID, MEDIUMORCHID1, MEDIUM«
ORCHID2, MEDIUMORCHID3, MEDIUMORCHID4, MEDIUMPURPLE, MEDIUMPURPLE1, MEDIUMPURPLEZ2,
MEDIUMPURPLE3, MEDIUMPURPLE4, MEDIUMSEAGREEN, MEDIUMSLATEBLUE, MEDIUMSPRINGGREEN,
MEDIUMTURQUOISE, MEDIUMVIOLETRED, MIDNIGHTBLUE, MINTCREAM, MISTYROSE, MISTYROSE2, M-
ISTYROSES, MISTYROSE4, MOCCASIN, NAVAJOWHITE1, NAVAJOWHITE2, NAVAJOWHITES3, NAVAJOWH:-
ITE4, NAVYBLUE, OLDLACE, OLIVEDRAB, OLIVEDRAB1, OLIVEDRABZ2, OLIVEDRABS, OLIVEDRAB4, ORA«
NGE, ORANGE1, ORANGE2, ORANGE3, ORANGE4, ORANGERED, ORANGERED1, ORANGERED2, ORAN:-
GERED3, ORANGEREDA4, ORCHID, ORCHID1, ORCHID2, ORCHID3, ORCHID4, PALEGOLDENROD, PALEG:-
REEN, PALEGREEN1, PALEGREEN2, PALEGREENS3, PALEGREEN4, PALETURQUOISE, PALETURQUOISET,
PALETURQUOISE2, PALETURQUOISE3, PALETURQUOISE4, PALEVIOLETRED, PALEVIOLETRED1, PALE«
VIOLETREDZ2, PALEVIOLETREDS, PALEVIOLETRED4, PAPAYAWHIP, PEACHPUFF, PEACHPUFF2, PEACH
PUFF3, PEACHPUFF4, PERU, PINK, PINK1, PINK2, PINK3, PINK4, PLUM, PLUM1, PLUM2, PLUM3, PLUM4,
POWDERBLUE, PURPLE, PURPLE1, PURPLE2, PURPLE3, PURPLE4, RED, RED1, RED2, RED3, RED4, RO:-
SYBROWN, ROSYBROWN1, ROSYBROWNZ2, ROSYBROWN3, ROSYBROWN4, ROYALBLUE, ROYALBLUET,
ROYALBLUE2, ROYALBLUES, ROYALBLUE4, SADDLEBROWN, SALMON, SALMON1, SALMON2, SALMONS,
SALMON4, SANDYBROWN, SEAGREEN, SEAGREEN1, SEAGREEN2, SEAGREEN3, SEAGREEN4, SEASH~
ELL, SEASHELL2, SEASHELL3, SEASHELL4, BEET, TEAL, SIENNA, SIENNA1, SIENNA2, SIENNA3, SIENNA4,
SKYBLUE, SKYBLUE1, SKYBLUE2, SKYBLUE3, SKYBLUE4, SLATEBLUE, SLATEBLUE1, SLATEBLUEZ2, SL+-
ATEBLUES3, SLATEBLUE4, SLATEGRAY1, SLATEGRAY2, SLATEGRAY3, SLATEGRAY4, SLATEGRAY, SNOW,
SNOW2, SNOW3, SNOW4, SPRINGGREEN, SPRINGGREEN2, SPRINGGREEN3, SPRINGGREEN4, STEEL:-
BLUE, STEELBLUE1, STEELBLUE2, STEELBLUES3, STEELBLUE4, TAN, TAN1, TAN2, TAN3, TAN4, THISTLE,
THISTLE1, THISTLE2, THISTLE3, THISTLE4, TOMATO, TOMATO1, TOMATO2, TOMATO3, TOMATO4, TU-
RQUOISE, TURQUOISE1, TURQUOISE2, TURQUOISES3, TURQUOISE4, VIOLET, VIOLETRED, VIOLETRED1,
VIOLETRED2, VIOLETREDS, VIOLETRED4, WHEAT, WHEAT1, WHEAT2, WHEAT3, WHEAT4, WHITE, WHIT:-
ESMOKE, YELLOW, YELLOW1, YELLOWZ2, YELLOWS, YELLOW4 and YELLOWGREEN.

vaspects [name] [-setcolor ColorName] [-setcolor R G B] [-unsetcolor]
vsetcolor [name] ColorName
vunsetcolor [name]

Transparency. The Transp may be between 0.0 (opaque) and 1.0 (fully transparent). xxWarning: at 1.0 the
shape becomes invisible.

vaspects [name] [-settransparency Transp] [-unsettransparency]
vsettransparency [name] Transp
vunsettransparency [name]

Material. The MatName can be BRASS, BRONZE, COPPER, GOLD, PEWTER, PLASTER, PLASTIC, SILV:-
ER, STEEL, STONE, SHINY_PLASTIC, SATIN, METALIZED, NEON_GNC, CHROME, ALUMINIUM, OBSIDIAN,
NEON_PHC, JADE, WATER, GLASS, DIAMOND or CHARCOAL.

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands

50

vaspects [name] [-setmaterial MatName] [-unsetmateriall]
vsetmaterial [name] MatName
vunsetmaterial [name]

Line width. Specifies width of the edges. The LineWidth may be between 0.0 and 10.0.

vaspects [name] [-setwidth LineWidth] [-unsetwidth]
vsetwidth [name] LineWidth
vunsetwidth [name]

Example:

vinit

box b 10 10 10
vdisplay b
viit

vsetdispmode b 1
vaspects —-setcolor red -settransparency 0.2
vrotate 10 10 10

4.3.11 vsetshading
Syntax:

vsetshading shapename [coefficient]

Sets deflection coefficient that defines the quality of the shape’s representation in the shading mode. Default

coefficient is 0.0008.

Example:

vinit

psphere s 20
vdisplay s

viit

vsetdispmode 1
vsetshading s 0.005

4.3.12 vunsetshading
Syntax:

vunsetshading [shapename]

Sets default deflection coefficient (0.0008) that defines the quality of the shape’s representation in the shading

mode.

4.3.13 vsetam

Syntax:

vsetam [shapename] mode

Activates selection mode for all selected or named shapes:

« Ofor shape itself,
1 (vertices),

» 2 (edges),

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands

51

* 3 (wires),
* 4 (faces),
» 5(shells),
* 6 (solids),

+ 7 (compounds).
Example:

vinit

box b 10 10 10
vdisplay b
viit

vsetam b 2

4.3.14 vunsetam
Syntax:

vunsetam

Deactivates all selection modes for all shapes.

4.3.15 vdump

Syntax:

vdump <filename>.{png|bmp|jpg|lgif} [-width Width -height Height]
[-buffer rgb|rgba|depth=rgb]
[-stereo mono|left|right|blend|sideBySide|overUnder=mono]

Extracts the contents of the viewer window to a image file.

4.3.16 vdir
Syntax:

vdir

Displays the list of displayed objects.

4317 vsub

Syntax:

vsub 0/1(on/off) [shapename]

Hilights/unhilights named or selected objects which are displayed at neutral state with subintensity color.

Example:

vinit

box b 10 10 10
psphere s 20
vdisplay b s
viit
vsetdispmode 1
vsub b 1

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands

4.3.18 vsensdis
Syntax:

vsensdis

Displays active entities (sensitive entities of one of the standard types corresponding to active selection modes).

Standard entity types are those defined in Select3D package:

* sensitive box

* sensitive face

+ sensitive curve

* sensitive segment

* sensitive circle

* sensitive point

* sensitive triangulation

* sensitive triangle Custom (application-defined) sensitive entity types are not processed by this command.

4.3.19 vsensera

Syntax:

vsensera

Erases active entities.

4320 vr
Syntax:

vr filename

Reads shape from BREP-format file and displays it in the viewer.

Example:

vinit
vr myshape.brep

4.3.21 vstate

Syntax:

vstate [-entities] [-hasSelected] [namel] ... [nameN]
Reports show/hidden state for selected or named objects:

* entities — prints low-level information about detected entities;

+ hasSelected — prints 1 if the context has a selected shape and 0 otherwise.

(c) Open CASCADE 2018

4.3 AIS viewer -- display commands

53

4.3.22 vraytrace
Syntax:

vraytrace [0/1]

Turns on/off ray tracing renderer.

4.3.23 vrenderparams

Syntax:

vrenderparams [-rayTrace|-raster] [-rayDepth 0..10] [-shadows {on|off}]
[-reflections {on|off}] [-fsaa {on|off}] [-gleam {on|off}]
[-gi {on|off}] [-brng {on|off}] [-env {on|off}]

[-shadin {color|flat|gouraud|phong}]

Manages rendering parameters:

* rayTrace — Enables GPU ray-tracing

+ raster — Disables GPU ray-tracing

+ rayDepth — Defines maximum ray-tracing depth

» shadows — Enables/disables shadows rendering

« reflections — Enables/disables specular reflections

+ fsaa — Enables/disables adaptive anti-aliasing

» gleam — Enables/disables transparency shadow effects

» gi — Enables/disables global illumination effects

» brng — Enables/disables blocked RNG (fast coherent PT)

» env — Enables/disables environment map background

+ shadingModel — Controls shading model from enumeration color, flat, gouraud, phong

Unlike vcaps, these parameters dramatically change visual properties. The command is intended to control presen-

tation quality depending on hardware capabilities and performance.

Example:

vinit

box b 10 10 10

vdisplay b

viit

vraytrace 1

vrenderparams -shadows 1 -reflections 1 -fsaa 1

4.3.24 vshaderprog
Syntax:

’vshaderprog [name] pathToVertexShader pathToFragmentShader’
or ’vshaderprog [name] off’ to disable GLSL program
or ’vshaderprog [name] phong’ to enable per-pixel lighting calculations

Enables rendering using a shader program.

(c) Open CASCADE 2018

4.4 AIS viewer -- object commands

54

4.3.25 vsetcolorbg
Syntax:

vsetcolorbg r g b

Sets background color.

Example:

vinit
vsetcolorbg 200 0 200

4.4 AIS viewer -- object commands
4.41 vtrihedron

Syntax:

vtrihedron name [-dispMode {wf|sh|wireframe|shading}]

[-origin x y z]

[-zaxis u v w —-xaxis u v w
[-drawaxes {X|Y|Z|XY|YZ|XZ|XYZ}]
[-hidelabels {on|off}]"
[-label {XAxis|YAxis|ZAxis}
[-attribute {XAxisLength|YAxisLength|ZAxisLength

| TubeRadiusPercent | ConeRadiusPercent"

|ConeLengthPercent |OriginRadiusPercent"

| ShadingNumberOfFacettes} value]"
[-color {Origin|XAxis|YAxis|ZAxis|XOYAxis|YOZAxis"

| XOZAxis |Whole}
[-textcolor {r g b | colorName}]"
colorName}]"
[-priority {Origin|XAxis|YAxis|ZAxis|XArrow"

| YArrow| ZArrow | XOYAxis|YOZAxis"

| XOZAxis |Whole}

[-arrowscolor {r g b |

colorName}]"

Creates a new AIS_Trihedron object or changes existing trihedron. If no argument is set, the default trihedron

(0XY2) is created.

Example:

vinit
vtrihedron trl

vtrihedron t2 -dispmode shading -origin -200 -200 -300
vtrihedron t2 -color XAxis Quantity_NOC_RED

vtrihedron t2 -color YAxis Quantity_NOC_GREEN
vtrihedron t2 -color ZAxis|Origin Quantity_ NOC_BLUE1

4.42 vplanetri
Syntax:

vplanetri name

Creates a plane from a trihedron selection. If no arguments are set, the default plane is created.

443 vsize
Syntax:

vsize [name] [size]

(c) Open CASCADE 2018

4.4 AIS viewer -- object commands 55

Changes the size of a named or selected trihedron. If the name is not defined: it affects the selected trihedrons
otherwise nothing is done. If the value is not defined, it is set to 100 by default.

Example:

vinit

vtrihedron trl

vtrihedron tr2 0 0 0 1 0 0 1 0 O
vsize tr2 400

4.4.4 vaxis
Syntax:

vaxis name [Xa Ya Za Xb Yb ZDb]

Creates an axis. If the values are not defined, an axis is created by interactive selection of two vertices or one edge

Example:

vinit
vtrihedron tr
vaxis axel 0 0 0 1 0 O

4.45 vaxispara
Syntax:

vaxispara name

Creates an axis by interactive selection of an edge and a vertex.

4.4.6 vaxisortho
Syntax:

vaxisotrho name

Creates an axis by interactive selection of an edge and a vertex. The axis will be orthogonal to the selected edge.

4.47 vpoint
Syntax:

vpoint name [Xa Ya Za]

Creates a point from coordinates. If the values are not defined, a point is created by interactive selection of a vertice
or an edge (in the center of the edge).

Example:

vinit
vpoint p 0 0 O

(c) Open CASCADE 2018

4.4 AIS viewer -- object commands

448 vplane
Syntax:

vplane name [AxisName] [PointName]
vplane name [PointName] [PointName] [PointName]
vplane name [PlaneName] [PointName]

Creates a plane from named or interactively selected entities. TypeOfSensitivity:

* 0 — Interior

* 1 —Boundary

Example:

vinit

vpoint pl 0 50 0

vaxis axel 0 0 0 0 0 1
vtrihedron tr

vplane planel axel pl

4.4.9 vplanepara
Syntax:

vplanepara name

Creates a plane from interactively selected vertex and face.

4410 vplaneortho
Syntax:

vplaneortho name

Creates a plane from interactive selected face and coplanar edge.

4411 vline
Syntax:

vline name [PointName] [PointName]
vline name [Xa Ya Za Xb Yb ZDb]

Creates a line from coordinates, named or interactively selected vertices.

Example:

vinit

vtrihedron tr

vpoint pl 0 50 0

vpoint p2 50 0 O

vline linel pl p2

vline line2 0 0 0 50 0 1

(c) Open CASCADE 2018

4.4 AIS viewer -- object commands 57

4412 vcircle

Syntax:

vcircle name [PointName PointName PointName IsFilled]
vcircle name [PlaneName PointName Radius IsFilled]

Creates a circle from named or interactively selected entities. Parameter IsFilled is defined as 0 or 1.

Example:

vinit

vtrihedron tr

vpoint pl 0 50 0

vpoint p2 50 0 O

vpoint p3 0 0 O

vcircle circlel pl p2 p3 1

4413 vtri2d
Syntax:

vtri2d name

Creates a plane with a 2D trihedron from an interactively selected face.

4414 vselmode
Syntax:

vselmode [object] mode_number is_turned_on=(1]0)

Sets the selection mode for an object. If the object value is not defined, the selection mode is set for all displayed
objects. Mode_number is a non-negative integer encoding different interactive object classes. For shapes the
following mode_number values are allowed:

* 0 —shape
* 1 —vertex
+ 2—edge
* 3 —wire
* 4 —face

* 5—shell

* 6 —solid

» 7 —compsolid
» 8 —compound is_turned_onis:
« 1if mode is to be switched on

« 0 if mode is to be switched off

Example:

vinit

vpoint pl 0 0 O

vpoint p2 50 0 0O

vpoint p3 25 40 0

vtriangle trianglel pl p2 p3

(c) Open CASCADE 2018

4.4 AIS viewer -- object commands

58

4.415 vconnect

Syntax:

vconnect vconnect name Xo Yo Zo objectl object2 ... [color=NAME]

Creates AIS_ConnectedInteractive object from the input object and location and displays it.

Example:

vinit

vpoint pl 0 0 O

vpoint p2 50 0 O

vsegment segment pl p2

restore CrankArm.brep obj

vdisplay obj

vconnect new obj 100100100 1 0 0 0 0 1

4.4.16 vtriangle
Syntax:

vtriangle name PointName PointName PointName

Creates and displays a filled triangle from named points.

Example:

vinit

vpoint pl 0 0 O

vpoint p2 50 0 O

vpoint p3 25 40 0

vtriangle trianglel pl p2 p3

4.417 vsegment
Syntax:

vsegment name PointName PointName

Creates and displays a segment from named points.

Example:

Vinit

vpoint pl 0 0 O

vpoint p2 50 0 0O
vsegment segment pl p2

4.4.18 vpointcloud

Syntax:

vpointcloud name shape [-randColor] [-normals] [-noNormals]

Creates an interactive object for an arbitrary set of points from the triangulated shape. Additional options:

 randColor — generates a random color per point;
» normals — generates a normal per point (default);

» noNormals — does not generate a normal per point.

(c) Open CASCADE 2018

4.4 AIS viewer -- object commands

59

vpointcloud name x y z r npts {surface|volume}

[-randColor]

[-normals] [—-noNormals]

Creates an arbitrary set of points (npts) randomly distributed on a spheric surface or within a spheric volume (x y z
r). Additional options:

» randColor — generates a random color per point;

* normals — generates a normal per point (default);

» noNormals — does not generate a normal per point.

Example:

vinit

vpointcloud pc 0 0 0 100 100000 surface -randColor

viit

4.419 vclipplane

Syntax:

vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane
vclipplane

maxplanes <view_name> -- gets plane limit for the view.

create <plane_name> -- creates a new plane.

delete <plane_name> -- deletes a plane.

clone <source_plane> <plane_name> -- clones the plane definition.
set/unset <plane_name> object <object list> -- sets/unsets the plane for an IO.
set/unset <plane_name> view <view list> -- sets/unsets plane for a view.
change <plane_name> on/off -- turns clipping on/off.

change <plane_name> equation <a> <c> <d> -- changes plane equation.
change <plane_name> capping on/off —-- turns capping on/off.

change <plane_name> capping color <r> <g> -- sets color.

change <plane name> capping texname <texture> -- sets texture.

change <plane_name> capping texscale <sx> <sy> —-- sets texture scale.
change <plane_name> capping texorigin <tx> <ty> -- sets texture origin.
change <plane_name> capping texrotate <angle> -- sets texture rotation.
change <plane_name> capping hatch on/off/<id> -- sets hatching mask.

Manages clipping planes

Example:

vinit
vclipplane
vclipplane

create
change

plnl
plnl equation 1 0 0 -0.1

vclipplane set plnl view Driverl/Viewerl/Viewl
box b 100 100 100

vdisplay b

vsetdispmode 1

viit
vrotate 10

10 10

vselect 100 100

4.4.20 vdimension

Syntax:

vdimension name {-angle|-length|-radius|-diameter}

—-shapes shapel [shape2 [shape3]

[-text 3d|2d wf|sh|wireframe|shading IntegerSize]

—label left|right|hcenter|hfit top|bottom|vcenter|vfit]
[{-arrowlength|-arlen} RealArrowLength]
{-arrowangle|-arangle} ArrowAngle (degrees)]
—flyout FloatValue -extension FloatValue]

[
[
[
[
[
[
[

—arrow external|internall|fit]

—autovalue] [-value CustomRealValue]

—dispunits DisplayUnitsString]
-modelunits ModelUnitsString]

[-showunits

[-plane xoy|yoz|zox]

[-textvalue CustomTextValue]

—-hideunits]

Builds angle, length, radius or diameter dimension interactive object name.

Attension: length dimension can't be built without working plane.

Example:

(c) Open CASCADE 2018

4.4 AIS viewer -- object commands

60

vinit

vpoint pl 0 0 O

vpoint p2 50 50 0

vdimension diml -length -plane xoy -shapes pl p2

vpoint p3 100 0 O
vdimension dim2 -angle -shapes pl p2 p3

vcircle circle pl p2 p3 0
vdimension dim3 -radius -shapes circle
viit

4421 vdimparam

Syntax:

vdimparam name [-text 3d|2d wf|sh|wireframe|shading IntegerSize]
[-label left|right|hcenter|hfit top|bottom|vcenter|vfit]
[-arrow externall|internal|fit]
[{-arrowlength|-arlen} RealArrowLength]
[{-arrowangle|-arangle} ArrowAngle (degrees)]
[-plane xoy|yoz|zox]

[-flyout FloatValue -extension FloatValue]
[-autovalue]

[-value CustomRealValue]

[-textvalue CustomTextValue]

[-dispunits DisplayUnitsString]

[-modelunits ModelUnitsString]

[-showunits | -hideunits]

Sets parameters for angle, length, radius and diameter dimension name.

Example:

vinit

vpoint pl 0 0 O

vpoint p2 50 50 0

vdimension diml -length -plane xoy -shapes pl p2

vdimparam diml -flyout -15 -arrowlength 4 -showunits -value 10
viit

vdimparam diml -textvalue "w_1"

vdimparam diml -autovalue

4.4.22 vangleparam
Syntax:

vangleparam name [-type interior|exterior]
[-showarrow first|second|both|none]

Sets parameters for angle dimension name.

Example:

vinit

vpoint pl 0 0 O

vpoint p2 10 0 O

vpoint p3 10 5 0

vdimension diml -angle -plane xoy -shapes pl p2 p3
viit

vangleparam diml -type exterior -showarrow first

4.4.23 vlengthparam

Syntax:

vlengthparam name [-type interior|exterior]
[-showarrow first|second|both|none]

(c) Open CASCADE 2018

4.5 AIS viewer -- Mesh Visualization Service 61

Sets parameters for length dimension name.

Example:

vinit

vpoint pl 20 20 0

vpoint p2 80 80 O

vdimension diml -length -plane xoy -shapes pl p2
vtop

viit

vzoom 0.5

vlengthparam diml -direction ox

4.4.24 vmovedim

Syntax:

vmovedim [name] [x y z]

Moves picked or named (if name parameter is defined) dimension to picked mouse position or input point with
coordinates x,y,z. Text label of dimension name is moved to position, another parts of dimension are adjusted.

Example:

vinit

vpoint pl 0 0 O

vpoint p2 50 50 0

vdimension diml -length -plane xoy -shapes pl p2
vmovedim diml -10 30 0O

4.5 AIS viewer -- Mesh Visualization Service

MeshVS (Mesh Visualization Service) component provides flexible means of displaying meshes with associated
pre- and post- processor data.

451 meshfromstl

Syntax:

meshfromstl meshname file

Creates a MeshVS_Mesh object based on STL file data. The object will be displayed immediately.
Example:

meshfromstl mesh myfile.stl

452 meshdispmode

Syntax:

meshdispmode meshname displaymode
Changes the display mode of object meshname. The displaymode is integer, which can be:

« 1 for wireframe,
» 2for shading mode, or

» 3for shrink mode.
Example:
vinit

meshfromstl mesh myfile.stl
meshdispmode mesh 2

(c) Open CASCADE 2018

4.5 AIS viewer -- Mesh Visualization Service 62

4.5.3 meshselmode
Syntax:

meshselmode meshname selectionmode

Changes the selection mode of object meshname. The selectionmode is integer OR-combination of mode flags.
The basic flags are the following:

* 1-node selection;
» 2-0D elements (not supported in STL);
* 4 —links (not supported in STL);

» 8-—faces.

Example:

vinit
meshfromstl mesh myfile.stl
meshselmode mesh 1

4.5.4 meshshadcolor
Syntax:

meshshadcolor meshname red green blue

Changes the face interior color of object meshname. The red, green and blue are real values between 0 and 1.

Example:

vinit
meshfromstl mesh myfile.stl
meshshadcolormode mesh 0.5 0.5 0.5

45,5 meshlinkcolor
Syntax:

meshlinkcolor meshname red green blue

Changes the color of face borders for object meshname. The red, green and blue are real values between 0 and 1.

Example:

vinit
meshfromstl mesh myfile.stl
meshlinkcolormode mesh 0.5 0.5 0.5

45.6 meshmat
Syntax:

meshmat meshname material

Changes the material of object meshname.

material is represented with an integer value as follows (equivalent to enumeration Graphic3d_NameOfMaterial):

(c) Open CASCADE 2018

4.5 AIS viewer -- Mesh Visualization Service

63

- 0-BRASS,

. 1-BRONZE,

. 2- COPPER,

« 3-GOLD,

. 4- PEWTER,

- 5— PLASTER,

« 6-PLASTIC,

. 7-SILVER,

- 8- STEEL,

- 9- STONE,

« 10— SHINY PLASTIC,
. 11— SATIN,

. 12— METALIZED,
. 13— NEON_GNC,
. 14— CHROME,

. 15— ALUMINIUM,
- 16 — OBSIDIAN,

- 17— NEON_PHC,
. 18 - JADE,

. 19— DEFAULT,

* 20 — UserDefined

Example:

vinit
meshfromstl mesh myfile.stl
meshmat mesh JADE

4.5.7 meshshrcoef
Syntax:

meshshrcoef meshname shrinkcoefficient

Changes the value of shrink coefficient used in the shrink mode. In the shrink mode the face is shown as a congruent
part of a usual face, so that shrinkcoefficient controls the value of this part. The shrinkcoefficient is a positive real

number.
Example:
vinit

meshfromstl mesh myfile.stl
meshshrcoef mesh 0.05

(c) Open CASCADE 2018

4.5 AIS viewer -- Mesh Visualization Service

45.8 meshshow
Syntax:

meshshow meshname

Displays meshname in the viewer (if it is erased).

Example:

vinit
meshfromstl mesh myfile.stl
meshshow mesh

4.5.9 meshhide
Syntax:

meshhide meshname

Hides meshname in the viewer.

Example:

vinit
meshfromstl mesh myfile.stl
meshhide mesh

4510 meshhidesel
Syntax:

meshhidesel meshname

Hides only selected entities. The other part of meshname remains visible.

4511 meshshowsel
Syntax:

meshshowsel meshname

Shows only selected entities. The other part of meshname becomes invisible.

4.5.12 meshshowall
Syntax:

meshshowall meshname

Changes the state of all entities to visible for meshname.

(c) Open CASCADE 2018

4.6 VIS Viewer commands

65

4513 meshdelete
Syntax:

meshdelete meshname

Deletes MeshVS_Mesh object meshname.

Example:

vinit
meshfromstl mesh myfile.stl
meshdelete mesh

4.6 VIS Viewer commands

A specific plugin with alias VIS should be loaded to have access to VIS functionality in DRAW Test Harness:

\> pload VIS

4.6.1 ivtkinit
Syntax:
ivtkinit

Creates a window for VTK viewer.

4.6.2 ivtkdisplay
Syntax:

ivtkdisplay namel [name2] ... [name n]

Displays named objects.

Example:

(c) Open CASCADE 2018

4.6 VIS Viewer commands

66

ivtkinit

create cone
pcone ¢ 5 0 10
ivtkdisplay c

M [V iETest M (=] E3

4.6.3 ivtkerase
Syntax:

ivtkerase [namel] [name2] ... [name n]

Erases named objects. If no arguments are passed, erases all displayed objects.

Example:

ivtkinit

create a sphere

psphere s 10

create a cone

pcone ¢ 5 0 10

create a cylinder
pcylinder cy 5 10

display objects
ivtkdisplay s c cy

erase only the cylinder
ivtkerase cy

erase the sphere and the cone
ivtkerase s c

4.6.4 ivikfit
Syntax:

ivtkfit

Automatic zoom/panning.

(c) Open CASCADE 2018

4.6 VIS Viewer commands 67

4.6.5 ivtkdispmode
Syntax:

ivtksetdispmode [name] {01}

Sets display mode for a named object. If no arguments are passed, sets the given display mode for all displayed
objects The possible modes are: 0 (WireFrame) and 1 (Shading).

Example:

ivtkinit

create a cone

pcone ¢ 5 0 10

display the cone

ivtkdisplay c

set shading mode for the cone
ivtksetdispmode c 1

4.6.6 ivtksetselmode
Syntax:

ivtksetselmode [name] mode {0]|1}

Sets selection mode for a named object. If no arguments are passed, sets the given selection mode for all the
displayed objects.

Example:

ivtkinit

load a shape from file
restore CrankArm.brep a

display the loaded shape
ivtkdisplay a

set the face selection mode
ivtksetselmode a 4 1

(c) Open CASCADE 2018

4.6 VIS Viewer commands

68

et L L 25 -] Rt)] i!

4.6.7 ivtkmoveto

Syntax:

ivtkmoveto x y

Imitates mouse cursor moving to point with the given display coordinates x.,y.
Example:

ivtkinit

pcone ¢ 5 0 10
ivtkdisplay c
ivtkmoveto 40 50

4.6.8 ivtkselect
Syntax:

ivtkselect x vy

Imitates mouse cursor moving to point with the given display coordinates and performs selection at this point.

Example:

ivtkinit

pcone ¢ 5 0 10
ivtkdisplay c
ivtkselect 40 50

4.6.9 ivtkdump

Syntax:

(c) Open CASCADE 2018

4.6 VIS Viewer commands 69

ivtkdump *filenamex [buffer={rgb|rgbaldepth}] [width height] [stereoproj={L|R}]

Dumps the contents of VTK viewer to image. It supports:

» dumping in different raster graphics formats: PNG, BMP, JPEG, TIFF or PNM.
» dumping of different buffers: RGB, RGBA or depth buffer.
+ defining of image sizes (width and height in pixels).

» dumping of stereo projections (left or right).

Example:

ivtkinit

pcone ¢ 5 0 10

ivtkdisplay c

ivtkdump D:/ConeSnapshot.png rgb 768 768

4.6.10 ivtkbgcolor
Syntax:

ivtkbgcolor r g b [r2 g2 b2]

Sets uniform background color or gradient background if second triple of parameters is set. Color parameters r,g,b
have to be chosen in the interval [0..255].

Example:

ivtkinit
ivtkbgcolor 200 220 250

ivtkbgcolor 10 30 80 255 255 255

(c) Open CASCADE 2018

4.6 VIS Viewer commands

70

(c) Open CASCADE 2018

5 OCAF commands 71

5 OCAF commands

This chapter contains a set of commands for Open CASCADE Technology Application Framework (OCAF).

5.1 Application commands
5.1.1 NewDocument
Syntax:

NewDocument docname [format]

Creates a new dochame document with MDTV-Standard or described format.

Example:
Create new document with default (MDTV-Standard) format
NewDocument D

Create new document with BinOcaf format
NewDocument D2 BinOcaf

5.1.2 IsInSession

Syntax:

IsInSession path

Returns 0, if path document is managed by the application session, 7 — otherwise.

Example:

IsInSession /myPath/myFile.std

5.1.3 ListDocuments
Syntax:

ListDocuments

Makes a list of documents handled during the session of the application.

5.1.4 Open
Syntax:

Open path docname [-stream]

Retrieves the document of file dochame in the path path. Overwrites the document, if it is already in session.

option -stream activates usage of alternative interface of OCAF persistence working with C++ streams instead of
file names.

Example:

Open /myPath/myFile.std D

(c) Open CASCADE 2018

5.2 Basic commands 72

5.1.5 Close

Syntax:

Close docname

Closes docname document. The document is no longer handled by the applicative session.

Example:

Close D

51.6 Save
Syntax:

Save docname

Saves docname active document.

Example:

Save D

5.1.7 SaveAs
Syntax:

SaveAs docname path [-stream]

Saves the active document in the file docname in the path path. Overwrites the file if it already exists.

option -stream activates usage of alternative interface of OCAF persistence working with C++ streams instead of
file names.

Example:

SaveAs D /myPath/myFile.std

5.2 Basic commands
5.2.1 Label
Syntax:

Label docname entry

Creates the label expressed by <entry> if it does not exist.

Example

Label D 0:2

(c) Open CASCADE 2018

5.2 Basic commands

73

5.22 NewChild

Syntax:

NewChild docname [taggerlabel =

Finds (or creates) a TagSource attribute located at father label of <taggerlabel> and makes a new child label.

Example
Create new child of root label
NewChild D

Create new child of existing 1
Label D 0:2
NewChild D 0:2

5.2.3 Children
Syntax:

Children docname label

Root label]

abel

Returns the list of attributes of label.

Example

Children D 0:2

5.24 ForgetAll
Syntax:

ForgetAll docname label

Forgets all attributes of the label.

Example

ForgetAll D 0:2

5.2.5 Application commands
5.2.6 Main

Syntax:

Main docname

Returns the main label of the framework.

Example:

Main D

(c) Open CASCADE 2018

5.2 Basic commands 74

5.2.7 UndoLimit

Syntax:

UndoLimit docname [value=0]

Sets the limit on the number of Undo Delta stored. 0 will disable Undo on the document. A negative value means that
there is no limit. Note that by default Undo is disabled. Enabling it will take effect with the next call to NewCommand.
Of course, this limit is the same for Redo

Example:

UndoLimit D 100

5.2.8 Undo

Syntax:

Undo docname [value=1]

Undoes value steps.

Example:

Undo D

529 Redo

Syntax:

Redo docname [value=1]

Redoes value steps.

Example:

Redo D

5.2.10 OpenCommand

Syntax:

OpenCommand docname

Opens a new command transaction.

Example:

OpenCommand D

5.2.11 CommitCommand

Syntax:

CommitCommand docname

Commits the Command transaction.

Example:

CommitCommand D

(c) Open CASCADE 2018

5.2 Basic commands

75

5.2.12 NewCommand

Syntax:

NewCommand docname

This is a shortcut for Commit and Open transaction.

Example:

NewCommand D

5.2.13 AbortCommand

Syntax:

AbortCommand docname

Aborts the Command transaction.

Example:

AbortCommand D

5.2.14 Copy

Syntax:

Copy docname entry Xdocname Xentry

Copies the contents of entry to Xentry. No links are registered.

Example:

Copy D1 0:2 D2 0:4

5.2.15 UpdateLink
Syntax:

UpdatelLink docname [entry]

Updates external reference set at entry.

Example:

UpdateLink D

5.2.16 CopyWithLink

Syntax:

CopyWithLink docname entry Xdocname Xentry

Aborts the Command transaction. Copies the content of entry to Xentry. The link is registered with an Xlink attribute

at Xentry label.

Example:

CopyWithLink D1 0:2 D2 0:4

(c) Open CASCADE 2018

5.3 Data Framework commands 76

5.2.17 UpdateXLinks

Syntax:

UpdateXLinks docname entry

Sets modifications on labels impacted by external references to the entry. The document becomes invalid and must
be recomputed

Example:

UpdateXLinks D 0:2

5.2.18 DumpDocument

Syntax:

DumpDocument docname

Displays parameters of docname document.

Example:

DumpDocument D

5.3 Data Framework commands
5.3.1 MakeDF

Syntax:

MakeDF dfname

Creates a new data framework.

Example:

MakeDF D

5.3.2 ClearDF

Syntax:

ClearDF dfname

Clears a data framework.

Example:

ClearDF D

5.3.3 CopyDF

Syntax:

CopyDF dfnamel entryl [dfname2] entry2

Copies a data framework.

Example:

CopyDF D 0:2 0:4

(c) Open CASCADE 2018

5.4 General attributes commands

77

5.3.4 CopyLabel

Syntax:

CopyLabel dfname fromlabel tolablel

Copies a label.

Example:

CopyLabel D1 0:2 0:4

5.3.5 MiniDumpDF

Syntax:

MiniDumpDF dfname

Makes a mini-dump of a data framework.

Example:

MiniDumpDF D

5.3.6 XDumpDF

Syntax:

XDumpDF dfname

Makes an extended dump of a data framework.

Example:

XDumpDF D

5.4 General attributes commands
5.4.1 Setinteger

Syntax:

SetInteger dfname entry value

Finds or creates an Integer attribute at entry label and sets value.

Example:

SetInteger D 0:2 100

5.4.2 Getinteger

Syntax:

GetInteger dfname entry [drawname]

Gets a value of an Integer attribute at entry label and sets it to drawname variable, if it is defined.

Example:

GetInteger D 0:2 Intl

(c) Open CASCADE 2018

5.4 General attributes commands 78

5.4.3 SetReal
Syntax:

SetReal dfname entry value

Finds or creates a Real attribute at entry label and sets value.

Example:

SetReal D 0:2 100.

5.4.4 GetReal
Syntax:

GetReal dfname entry [drawname]

Gets a value of a Real attribute at entry label and sets it to drawname variable, if it is defined.

Example:

GetReal D 0:2 Reall

5.4.5 SetintArray
Syntax:

SetIntArray dfname entry lower upper valuel value2 ...

Finds or creates an IntegerArray attribute at entry label with lower and upper bounds and sets *xxvalue1x, value2...

Example:

SetIntArray D 0:2 1 4 100 200 300 400

5.4.6 GetintArray
Syntax:

GetIntArray dfname entry

Gets a value of an IntegerArray attribute at entry label.

Example:

GetIntArray D 0:2

5.4.7 SetRealArray
Syntax:

SetRealArray dfname entry lower upper valuel value2 ...

Finds or creates a RealArray attribute at entry label with lower and upper bounds and sets value1, xvalue2x. ..

Example:

GetRealArray D 0:2 1 4 100. 200. 300. 400.

(c) Open CASCADE 2018

5.4 General attributes commands 79

5.4.8 GetRealArray
Syntax:

GetRealArray dfname entry

Gets a value of a RealArray attribute at entry label.

Example:

GetRealArray D 0:2

5.4.9 SetComment
Syntax:

SetComment dfname entry value

Finds or creates a Comment attribute at entry label and sets value.

Example:

SetComment D 0:2 "My comment"

5.4.10 GetComment
Syntax:

GetComment dfname entry

Gets a value of a Comment attribute at entry label.

Example:

GetComment D 0:2

5.4.11 SetExtStringArray
Syntax:

SetExtStringArray dfname entry lower upper valuel value2 ...

Finds or creates an ExtStringArray attribute at entry label with lower and upper bounds and sets value1, xvalue2x. ..

Example:

SetExtStringArray D 0:2 1 3 xstringl* *string2x xstring3«

5.4.12 GetExtStringArray
Syntax:

GetExtStringArray dfname entry

Gets a value of an ExtStringArray attribute at entry label.

Example:

GetExtStringArray D 0:2

(c) Open CASCADE 2018

5.4 General attributes commands

5.4.13 SetName
Syntax:

SetName dfname entry value

Finds or creates a Name attribute at entry label and sets value.

Example:

SetName D 0:2 %My namex

5.4.14 GetName
Syntax:

GetName dfname entry

Gets a value of a Name attribute at entry label.

Example:

GetName D 0:2

5.4.15 SetReference
Syntax:

SetReference dfname entry reference

Creates a Reference attribute at entry label and sets reference.

Example:

SetReference D 0:2 0:4

5.4.16 GetReference

Syntax:

GetReference dfname entry

Gets a value of a Reference attribute at entry label.

Example:

GetReference D 0:2

5.4.17 SetUAttribute

Syntax:

SetUAttribute dfname entry localGUID

Creates a UAttribute attribute at entry label with localGUID.
Example:

set localGUID "c73bd076-22ee-11d2-acde-080009dc4422"
SetUAttribute D 0:2 ${localGUID}

(c) Open CASCADE 2018

5.4 General attributes commands

81

5.4.18 GetUAttribute
Syntax:
GetUAttribute dfname entry loacalGUID

Finds a UAttribute at entry label with localGUID.

Example:

set localGUID "c73bd076-22ee-11d2-acde-080009dc4422"

GetUAttribute D 0:2 ${localGUID}

5.4.19 SetFunction

Syntax:

SetFunction dfname entry ID failure

Finds or creates a Function attribute at entry label with driver ID and failure index.

Example:

set ID "c73bd076-22ee-11d2-acde-080009dc4422"
SetFunction D 0:2 ${ID} 1

5.4.20 GetFunction

Syntax:

GetFunction dfname entry ID failure

Finds a Function attribute at entry label and sets driver ID to /D variable and failure index to failure variable.

Example:
GetFunction D 0:2 ID failure
5.4.21 NewShape

Syntax:

NewShape dfname entry [shape]

Finds or creates a Shape attribute at entry label.

shape if shape is defined.

Example:

box b 10 10 10
NewShape D 0:2 b

5.4.22 SetShape

Syntax:

SetShape dfname entry shape

Creates or updates the associated NamedShape attribute by

Creates or updates a NamedShape attribute at entry label by shape.

Example:

box b 10 10 10
SetShape D 0:2 b

(c) Open CASCADE 2018

5.5 Geometric attributes commands 82

5.423 GetShape

Syntax:

GetShape2 dfname entry shape

Sets a shape from NamedShape attribute associated with entry label to shape draw variable.

Example:

GetShape2 D 0:2 b

5.5 Geometric attributes commands
5.5.1 SetPoint

Syntax:

SetPoint dfname entry point

Finds or creates a Point attribute at entry label and sets point as generated in the associated NamedShape attribute.

Example:

point p 10 10 10
SetPoint D 0:2 p

5.5.2 GetPoint

Syntax:

GetPoint dfname entry [drawname]

Gets a vertex from NamedShape attribute at entry label and sets it to drawname variable, if it is defined.

Example:

GetPoint D 0:2 p

5.5.3 SetAxis

Syntax:

SetAxis dfname entry axis

Finds or creates an Axis attribute at entry label and sets axis as generated in the associated NamedShape attribute.
Example:

line 1 10 20 30 100 200 300
SetAxis D 0:2 1

5.5.4 GetAxis

Syntax:
GetAxis dfname entry [drawname]

Gets a line from NamedShape attribute at entry label and sets it to drawname variable, if it is defined.

Example:

GetAxis D 0:2 1

(c) Open CASCADE 2018

5.5 Geometric attributes commands 83

5.5.5 SetPlane
Syntax:

SetPlane dfname entry plane

Finds or creates a Plane attribute at entry label and sets plane as generated in the associated NamedShape
attribute.

Example:

plane pl 10 20 30 -1 0 O
SetPlane D 0:2 pl

55.6 GetPlane
Syntax:

GetPlane dfname entry [drawname]

Gets a plane from NamedShape attribute at entry label and sets it to drawname variable, if it is defined.

Example:

GetPlane D 0:2 pl

5.5.7 SetGeometry
Syntax:

SetGeometry dfname entry [type] [shape]

Creates a Geometry attribute at entry label and sets type and shape as generated in the associated NamedShape
attribute if they are defined. type must be one of the following: any, pnt, lin, cir, ell, spl, pin, cyl.

Example:

point p 10 10 10
SetGeometry D 0:2 pnt p

5.5.8 GetGeometryType
Syntax:

GetGeometryType dfname entry

Gets a geometry type from Geometry attribute at entry label.

Example:

GetGeometryType D 0:2

5.5.9 SetConstraint

Syntax:

SetConstraint dfname entry keyword geometrie [geometrie ...]
SetConstraint dfname entry "plane" geometrie
SetConstraint dfname entry "value" value

(c) Open CASCADE 2018

5.6 Tree attributes commands 84

1. Creates a Constraint attribute at entry label and sets keyword constraint between geometry(ies). keyword
must be one of the following: rad, dia, minr, majr, tan, par, perp, concentric, equal, dist, angle, eqrad, symm,
midp, eqdist, fix, rigid, or from, axis, mate, alignf, aligna, axesa, facesa, round, offset

2. Sets plane for the existing constraint.

3. Sets value for the existing constraint.

Example:

SetConstraint D 0:2 "value" 5

5.5.10 GetConstraint

Syntax:

GetConstraint dfname entry

Dumps a Constraint attribute at entry label

Example:

GetConstraint D 0:2

5.5.11 SetVariable

Syntax:

SetVariable dfname entry isconstant (0/1) units

Creates a Variable attribute at entry label and sets isconstant flag and units as a string.

Example:

SetVariable D 0:2 1 "mm"

5.5.12 GetVariable

Syntax:

GetVariable dfname entry isconstant units

Gets an isconstant flag and units of a Variable attribute at entry label.

Example:

GetVariable D 0:2 isconstant units
puts "IsConstant=${isconstant}"
puts "Units=${units}"

5.6 Tree attributes commands
5.6.1 RootNode

Syntax:

RootNode dfname treenodeentry [ID]

Returns the ultimate father of TreeNode attribute identified by its treenodeentry and its ID (or default ID, if /D is not
defined).

(c) Open CASCADE 2018

5.6 Tree attributes commands 85

5.6.2 SetNode
Syntax:

SetNode dfname treenodeentry [ID]

Creates a TreeNode attribute on the treenodeentry label with its tree ID (or assigns a default ID, if the /D is not
defined).

5.6.3 AppendNode
Syntax:

AppendNode dfname fatherentry childentry [fatherID]

Inserts a TreeNode attribute with its tree fatherID (or default ID, if fatherID is not defined) on childentry as last child
of fatherentry.

5.6.4 PrependNode
Syntax:

PrependNode dfname fatherentry childentry [fatherID]

Inserts a TreeNode attribute with its tree fatherID (or default ID, if fatherID is not defined) on childentry as first child
of fatherentry.

5.6.5 InsertNodeBefore
Syntax:

InsertNodeBefore dfname treenodeentry beforetreenode [ID]

Inserts a TreeNode attribute with tree ID (or default ID, if ID is not defined) beforetreenode before treenodeentry.

5.6.6 InsertNodeAfter
Syntax:

InsertNodeAfter dfname treenodeentry aftertreenode [ID]

Inserts a TreeNode attribute with tree ID (or default ID, if ID is not defined) aftertreenode after treenodeentry.

5.6.7 DetachNode
Syntax:

DetachNode dfname treenodeentry [ID]

Removes a TreeNode attribute with tree /D (or default ID, if /D is not defined) from treenodeentry.

(c) Open CASCADE 2018

5.6 Tree attributes commands 86

5.6.8 ChildNodelterate

Syntax:

ChildNodeIterate dfname treenodeentry alllevels(0/1) [ID]

Iterates on the tree of TreeNode attributes with tree /D (or default ID, if /D is not defined). If alllevels is set to 1 it
explores not only the first, but all the sub Step levels.

Example:

Label
Label
Label
Label
Label
Label
Label
Label

[eNeNeNoNeoNeNoNl
O 0 oUW N

[sAvllviivivivilvliv]

Set root node
SetNode D 0:2

AppendNode D
AppendNode D
PrependNode D 0:4 0:3
PrependNode D 0:4 0:8
PrependNode D 0:4 0:9

o o

InsertNodeBefore D 0:5 0:6
InsertNodeAfter D 0:4 0:7

DetachNode D 0:8

List all levels
ChildNodeIterate D 0:2 1

I
Il
g~ Ww o

List only first levels
ChildNodeIterate D 0:2 1

1
I
o s

5.6.9 InitChildNodelterator
Syntax:

InitChildNodeIterator dfname treenodeentry alllevels(0/1) [ID]

Initializes the iteration on the tree of TreeNode attributes with tree ID (or default ID, if ID is not defined). If alllevels is
set to 1 it explores not only the first, but also all sub Step levels.

Example:

InitChildNodeIterate D 0:5 1
set aChildNumber 0
for {set 1 1} {$i < 100} {incr i} {

if {[ChildNodeMore] == »TRUEx*} {
puts *Tree node = [ChildNodeValuel]x*
incr aChildNumber
ChildNodeNext

}
puts "aChildNumber=$aChildNumber"

(c) Open CASCADE 2018

5.7 Standard presentation commands

87

5.6.10 ChildNodeMore

Syntax:

ChildNodeMore

Returns TRUE if there is a current item in the iteration.

5.6.11 ChildNodeNext

Syntax:

ChildNodeNext

Moves to the next ltem.

5.6.12 ChildNodeValue

Syntax:

ChildNodeValue

Returns the current treenode of ChildNodelterator.

5.6.13 ChildNodeNextBrother

Syntax:

ChildNodeNextBrother

Moves to the next Brother. If there is none, goes up. This method is interesting only with allLevels behavior.

5.7 Standard presentation commands
5.7.1 AlSInitViewer

Syntax:

AISInitViewer docname

Creates and sets AISViewer attribute at root label, creates AIS viewer window.

Example:

AISInitViewer D

5.7.2 AISRepaint

Syntax:

AISRepaint docname

Updates the AIS viewer window.

Example:

AISRepaint D

(c) Open CASCADE 2018

5.7 Standard presentation commands 88

5.7.3 AlISDisplay

Syntax:

AISDisplay docname entry [not_update]

Displays a presantation of AlSobject from entry label in AIS viewer. If not_update is not defined then AlSobject is
recomputed and all visualization settings are applied.

Example:

AISDisplay D 0:5

5.7.4 AlSUpdate

Syntax:

AISUpdate docname entry

Recomputes a presentation of AlSobject from entry label and applies the visualization setting in AlS viewer.

Example:

AISUpdate D 0:5

5.7.5 AISErase

Syntax:

AISErase docname entry

Erases AlSobject of entry label in AIS viewer.

Example:

AISErase D 0:5

5.7.6 AISRemove

Syntax:

AISRemove docname entry

Erases AlSobject of entry label in AIS viewer, then AlSobject is removed from AIS_InteractiveContext.

Example:

AISRemove D 0:5

5.7.7 AISSet

Syntax:

AISSet docname entry ID

Creates AISPresentation attribute at entry label and sets as driver ID. ID must be one of the following: A (axis), C
(constraint), NS (namedshape), G (geometry), PL (plane), PT (point).

Example:

AISSet D 0:5 NS

(c) Open CASCADE 2018

5.7 Standard presentation commands 89

5.7.8 AISDriver

Syntax:

AISDriver docname entry [ID]

Returns DriverGUID stored in AISPresentation attribute of an entry label or sets a new one. ID must be one of the
following: A (axis), C (constraint), NS (namedshape), G (geometry), PL (plane), PT (point).

Example:

Get Driver GUID
AISDriver D 0:5

5.7.9 AISUnset

Syntax:

AISUnset docname entry

Deletes AISPresentation attribute (if it exists) of an entry label.

Example:

AISUnset D 0:5

5.7.10 AlSTransparency

Syntax:

AISTransparency docname entry [transparency]

Sets (if transparency is defined) or gets the value of transparency for AISPresentation attribute of an entry label.

Example:

AISTransparency D 0:5 0.5

5.7.11 AISHasOwnTransparency

Syntax:

AISHasOwnTransparency docname entry

Tests AISPresentation attribute of an entry label by own transparency.

Example:

AISHasOwnTransparency D 0:5

5.7.12 AlSMaterial

Syntax:

AISMaterial docname entry [material]

Sets (if material is defined) or gets the value of transparency for AISPresentation attribute of an entry label. material
is integer from 0 to 20 (see meshmat command).

Example:

AISMaterial D 0:5 5

(c) Open CASCADE 2018

5.7 Standard presentation commands 90

5.7.13 AISHasOwnMaterial
Syntax:

AISHasOwnMaterial docname entry

Tests AISPresentation attribute of an entry label by own material.

Example:

AISHasOwnMaterial D 0:5

5.7.14 AISColor
Syntax:

AISColor docname entry [color]

Sets (if color is defined) or gets value of color for AISPresentation attribute of an entry label. color is integer from 0
to 516 (see color names in vsetcolor).

Example:

AISColor D 0:5 25

5.7.15 AISHasOwnColor
Syntax:

AISHasOwnColor docname entry

Tests AISPresentation attribute of an entry label by own color.

Example:

AISHasOwnColor D 0:5

(c) Open CASCADE 2018

6 Geometry commands 91

6 Geometry commands

6.1 Overview

Draw provides a set of commands to test geometry libraries. These commands are found in the TGEOMETRY
executable, or in any Draw executable which includes Geometry Test commands.

In the context of Geometry, Draw includes the following types of variable:

» 2d and 3d points
» The 2d curve, which corresponds to Curve in GeomZ2d.
» The 3d curve and surface, which correspond to Curve and Surface in Geom package.

Draw geometric variables never share data; the copy command will always make a complete copy of the content of
the variable.

The following topics are covered in the nine sections of this chapter:

» Curve creation deals with the various types of curves and how to create them.
+ Surface creation deals with the different types of surfaces and how to create them.

« Curve and surface modification deals with the commands used to modify the definition of curves and
surfaces, most of which concern modifications to bezier and bspline curves.

+ Geometric transformations covers translation, rotation, mirror image and point scaling transformations.
» Curve and Surface Analysis deals with the commands used to compute points, derivatives and curvatures.
+ Intersections presents intersections of surfaces and curves.
» Approximations deals with creating curves and surfaces from a set of points.
» Constraints concerns construction of 2d circles and lines by constraints such as tangency.
+ Display describes commands to control the display of curves and surfaces.
Where possible, the commands have been made broad in application, i.e. they apply to 2d curves, 3d curves and

surfaces. For instance, the circle command may create a 2d or a 3d circle depending on the number of arguments
given.

Likewise, the translate command will process points, curves or surfaces, depending on argument type. You may not
always find the specific command you are looking for in the section where you expect it to be. In that case, look in
another section. The trim command, for example, is described in the surface section. It can, nonetheless, be used
with curves as well.

6.2 Curve creation

This section deals with both points and curves. Types of curves are:

» Analytical curves such as lines, circles, ellipses, parabolas, and hyperbolas.
 Polar curves such as bezier curves and bspline curves.

» Trimmed curves and offset curves made from other curves with the trim and offsef commands. Because they
are used on both curves and surfaces, the trim and offset commands are described in the surface creation
section.

* NURBS can be created from other curves using convert in the Surface Creation section.

(c) Open CASCADE 2018

user_guides__modeling_data.html#occt_modat_1

6.2 Curve creation 92

+ Curves can be created from the isoparametric lines of surfaces by the uiso and viso commands.

» 3d curves can be created from 2d curves and vice versa using the to3d and to2d commands. The project
command computes a 2d curve on a 3d surface.

Curves are displayed with an arrow showing the last parameter.

6.2.1 point

Syntax:

point name x y [z]

Creates a 2d or 3d point, depending on the number of arguments.

Example:

2d point
point pl 1 2

3d point
point p2 10 20 -5

6.2.2 line

Syntax:

line name x y [z] dx dy [dz]

Creates a 2d or 3d line. x y z are the coordinates of the line’s point of origin; dx, dy, dz give the direction vector.

A 2d line will be represented as x y dx dy, and a 3d line as x y z dx dy dz . A line is parameterized along its length
starting from the point of origin along the direction vector. The direction vector is normalized and must not be null.
Lines are infinite, even though their representation is not.

Example:

a 2d line at 45 degrees of the X axis
line 1 2011

a 3d line through the point 10 0 0 and parallel to Z
line 1 10 0 0 0 0 1

6.2.3 circle

Syntax:

circle name x y [z [dx dy dz]] [ux uy [uz]] radius

Creates a 2d or a 3d circle.

In 2d, x, y are the coordinates of the center and ux, uy define the vector towards the point of origin of the parameters.
By default, this direction is (1,0). The X Axis of the local coordinate system defines the origin of the parameters of
the circle. Use another vector than the x axis to change the origin of parameters.

In 3d, x, y, zare the coordinates of the center; dx, dy, dz give the vector normal to the plane of the circle. By default,
this vector is (0,0,1) i.e. the Z axis (it must not be null). ux, uy, uzis the direction of the origin; if not given, a default
direction will be computed. This vector must neither be null nor parallel to dx, dy, dz.

The circle is parameterized by the angle in [0,2xpi] starting from the origin and. Note that the specification of origin
direction and plane is the same for all analytical curves and surfaces.

Example:

(c) Open CASCADE 2018

6.2 Curve creation 93

A 2d circle of radius 5 centered at 10,-2
circle cl 10 -2 5

another 2d circle with a user defined origin

the point of parameter 0 on this circle will be
l+sqgrt(2),l+sqgrt (2)

circle c2 1 1 11 2

a 3d circle, center 10 20 -5, axis Z, radius 17
circle ¢3 10 20 -5 17

same 3d circle with axis Y
circle c4 10 20 -5 0 1 0 17

full 3d circle, axis X, origin on Z
circle ¢5 10 20 -5 1 0 0 0 0 1 17

6.2.4 ellipse
Syntax:

ellipse name x y [z [dx dy dz]] [ux uy [uz]] firstradius secondradius

Creates a 2d or 3d ellipse. In a 2d ellipse, the first two arguments define the center; in a 3d ellipse, the first three.
The axis system is given by firstradius, the major radius, and secondradius, the minor radius. The parameter range
of the ellipse is [0,2.xpi] starting from the X axis and going towards the Y axis. The Draw ellipse is parameterized
by an angle:

P(u) = 0 + firstradius*cos (u)*Xdir + secondradiusxsin (u)xYdir

where:

P is the point of parameter v,

» O, Xdir and Ydir are respectively the origin, X Direction and Y Direction of its local coordinate system.

Example:

default 2d ellipse
ellipse el 10 5 20 10

2d ellipse at angle 60 degree
ellipse e2 0 0 1 2 30 5

3d ellipse, in the XY plane
ellipse €3 0 0 0 25 5

3d ellipse in the X,Z plane with axis 1, 0 ,1
ellipse e4 0 0001 0101255

6.2.5 hyperbola
Syntax:

hyperbola name x y [z [dx dy dz]] [ux uy [uz]] firstradius secondradius

Creates a 2d or 3d conic. The first arguments define the center. The axis system is given by firstradius, the major
radius, and secondradius, the minor radius. Note that the hyperbola has only one branch, that in the X direction.

The Draw hyperbola is parameterized as follows:

P(U) = O + firstradius+*Cosh (U)*XDir + secondradius*Sinh (U)*xYDir

(c) Open CASCADE 2018

6.2 Curve creation 94

+ Pis the point of parameter U,

* O, XDir and YDir are respectively the origin, X Direction and YDirection of its local coordinate system.

Example:

default 2d hyperbola, with asymptotes 1,1 -1,1
hyperbola hl 0 0 30 30

2d hyperbola at angle 60 degrees
hyperbola h2 0 0 1 2 20 20

3d hyperbola, in the XY plane
hyperbola h3 0 0 0 50 50

6.2.6 parabola

Syntax:

parabola name x y [z [dx dy dz]] [ux uy [uz]] FocalLength

Creates a 2d or 3d parabola. in the axis system defined by the first arguments. The origin is the apex of the
parabola.

The Geom_Parabola is parameterized as follows:

P(u) = O + uxu/ (4.+F)«XDir + uxYDir

where:

+ Pis the point of parameter v,
» O, XDir and YDir are respectively the origin, X Direction and Y Direction of its local coordinate system,

» Fis the focal length of the parabola.

Example:

2d parabola
parabola pl 0 0 50

2d parabola with convexity +Y
parabola p2 0 0 0 1 50

3d parabola in the Y-Z plane, convexity +2Z
parabola p3 0 0 0 1 0 0 0 0 1 50

6.2.7 beziercurve, 2dbeziercurve

Syntax:

beziercurve name nbpole pole, [weight]
2dbeziercurve name nbpole pole, [weight]

Creates a 3d rational or non-rational Bezier curve. Give the number of poles (control points,) and the coordinates
of the poles x(x1 y1 z1 [w1] x2 y2 z2 [w2])*. The degree will be nbpoles-1. To create a rational curve, give weights
with the poles. You must give weights for all poles or for none. If the weights of all the poles are equal, the curve is
polynomial, and therefore non-rational.

Example:

a rational 2d bezier curve (arc of circle)
2dbeziercurve ci 3 0 0 1 10 0 sqgrt(2.)/2. 10 10 1

a 3d bezier curve, not rational
beziercurve cc 4 0 0 0 10 0 0 10 0 10 10 10 10

(c) Open CASCADE 2018

6.2 Curve creation 95

6.2.8 bsplinecurve, 2dbsplinecurve, pbsplinecurve, 2dpbsplinecurve
Syntax:

bsplinecurve name degree nbknots knot, umult pole, weight
2dbsplinecurve name degree nbknots knot, umult pole, weight

pbsplinecurve name degree nbknots knot, umult pole, weight (periodic)
2dpbsplinecurve name degree nbknots knot, umult pole, weight (periodic)

Creates 2d or 3d bspline curves; the pbsplinecurve and 2dpbsplinecurve commands create periodic bspline
curves.

A bspline curve is defined by its degree, its periodic or non-periodic nature, a table of knots and a table of poles (i.e.
control points). Consequently, specify the degree, the number of knots, and for each knot, the multiplicity, for each
pole, the weight. In the syntax above, the commas link the adjacent arguments which they fall between: knot and
multiplicities, pole and weight.

The table of knots is an increasing sequence of reals without repetition. Multiplicities must be lower or equal to
the degree of the curve. For non-periodic curves, the first and last multiplicities can be equal to degree+1. For a
periodic curve, the first and last multiplicities must be equal.

The poles must be given with their weights, use weights of 1 for a non rational curve, the number of poles must be:

 For a non periodic curve: Sum of multiplicities - degree + 1

* For a periodic curve: Sum of multiplicities - last multiplicity

Example:

a bspline curve with 4 poles and 3 knots
bsplinecurve bc 2 3 0 3 1 1 2 3\
1007170713081 0071

a 2d periodic circle (parameter from 0 to 2xpi !!)
dset h sqrt(3)/2

2dpbsplinecurve c 2 \

402 pi/1.5 2 pi/0.75 2 2xpi 2 \

0 -h/3 1\

0.5 -h/3 0.5 \

0.25 h/6 1\

0 2«h/3 0.5\

-0.25 h/6 1 \

-0.5 -h/3 0.5\

0 -h/3 1

Note that you can create the NURBS subset of bspline curves and surfaces by trimming analytical curves and
surfaces and executing the command convert.

6.2.9 uiso, viso
Syntax:

uiso name surface u
viso name surface u
Creates a U or V isoparametric curve from a surface.

Example:

create a cylinder and extract iso curves
cylinder c¢ 10

uiso cl c pi/6
viso c2 ¢

Note that this cannot be done from offset surfaces.

(c) Open CASCADE 2018

6.3 Surface creation 96

6.2.10 to3d, to2d
Syntax:

to3d name curve2d [plane]
to2d name curve3d [plane]

Create respectively a 3d curve from a 2d curve and a 2d curve from a 3d curve. The transformation uses a planar
surface to define the XY plane in 3d (by default this plane is the default OXYplane). to3d always gives a correct
result, but as to2d is not a projection, it may surprise you. It is always correct if the curve is planar and parallel to
the plane of projection. The points defining the curve are projected on the plane. A circle, however, will remain a
circle and will not be changed to an ellipse.

Example:

the following commands
circle ¢ 0 0 5

plane p -2 1 0 1 2 3
to3d c c p

will create the same circle as
circle ¢ =2 1 01 2 3 5

See also: project

6.2.11 project
Syntax:

project name curve3d surface

Computes a 2d curve in the parametric space of a surface corresponding to a 3d curve. This can only be used on
analytical surfaces.

If we, for example, intersect a cylinder and a plane and project the resulting ellipse on the cylinder, this will create a
2d sinusoid-like bspline.

cylinder ¢ 5

plane p 0 0 0 0 1 1
intersect i c p
project i2d i c

6.3 Surface creation
The following types of surfaces exist:

« Analytical surfaces: plane, cylinder, cone, sphere, torus;

 Polar surfaces: bezier surfaces, bspline surfaces;

« Trimmed and Offset surfaces;

« Surfaces produced by Revolution and Extrusion, created from curves with the revsurf and extsurf,

+ NURBS surfaces.

Surfaces are displayed with isoparametric lines. To show the parameterization, a small parametric line with a length
1/10 of V is displayed at 1/10 of U.

(c) Open CASCADE 2018

6.3 Surface creation 97

6.3.1 plane

Syntax:

plane name [x y z [dx dy dz [ux uy uz]]]

Creates an infinite plane.

A plane is the same as a 3d coordinate system, x,y,z is the origin, dx, dy, dz is the Z direction and ux, uy, uz is the
X direction.

The plane is perpendicular to Z and X is the U parameter. dx,dy,dz and ux,uy,uz must not be null or collinear.
ux,uy,uz will be modified to be orthogonal to dx,dy,dz.

There are default values for the coordinate system. If no arguments are given, the global system (0,0,0), (0,0,1),
(1,0,0). If only the origin is given, the axes are those given by default(0,0,1), (1,0,0). If the origin and the Z axis are
given, the X axis is generated perpendicular to the Z axis.

Note that this definition will be used for all analytical surfaces.

Example:

a plane through the point 10,0,0 perpendicular to X
with U direction on Y
plane pl 10 0 0 1 0 0 0 1 O

an horixontal plane with origin 10, -20, -5
plane p2 10 -20 -5

6.3.2 cylinder

Syntax:

cylinder name [x y z [dx dy dz [ux uy uz]]] radius

A cylinder is defined by a coordinate system, and a radius. The surface generated is an infinite cylinder with the Z
axis as the axis. The U parameter is the angle starting from X going in the Y direction.

Example:

a cylinder on the default Z axis, radius 10
cylinder cl 10

a cylinder, also along the Z axis but with origin 5,
10, -3

cylinder c2 5 10 -3 10

a cylinder through the origin and on a diagonal

with longitude pi/3 and latitude pi/4 (euler angles)
dset lo pi/3. la pi/4.

cylinder ¢3 0 0 0 cos(la)=xcos(lo) cos(la)=*sin(lo)
sin(la) 10

6.3.3 cone

Syntax:

cone name [x y z [dx dy dz [ux uy uz]]] semi-angle radius

Creates a cone in the infinite coordinate system along the Z-axis. The radius is that of the circle at the intersection
of the cone and the XY plane. The semi-angle is the angle formed by the cone relative to the axis; it should be
between -90 and 90. If the radius is 0, the vertex is the origin.

Example:

a cone at 45 degrees at the origin on Z
cone cl 45 0

a cone on axis Z with radius rl at zl and r2 at z2
cone c2 0 0 zl 180.xatan2(r2-rl,z2-z1)/pi rl

(c) Open CASCADE 2018

6.3 Surface creation 98

6.3.4 sphere
Syntax:

sphere name [x y z [dx dy dz [ux uy uz]]] radius

Creates a sphere in the local coordinate system defined in the plane command. The sphere is centered at the
origin.

To parameterize the sphere, u is the angle from X to Y, between 0 and 2xpi. v is the angle in the half-circle at
angle v in the plane containing the Z axis. v is between -pi/2 and pi/2. The poles are the points Z = +/- radius; their
parameters are u,+/-pi/2 for any u in 0,2xpi.

Example:

a sphere at the origin

sphere sl 10

a sphere at 10 10 10, with poles on the axis 1,1,1
sphere s2 10 10 10 1 1 1 10

6.3.5 torus
Syntax:

torus name [x y z [dx dy dz [ux uy uz]]] major minor

Creates a torus in the local coordinate system with the given major and minor radii. Zis the axis for the major radius.
The major radius may be lower in value than the minor radius.

To parameterize a torus, uis the angle from X to Y; vis the angle in the plane at angle u from the XY plane to Z. u
and v are in 0,2xpi.

Example:

a torus at the origin
torus tl 20 5

a torus in another coordinate system
torus t2 10 5 -2 2 1 0 20 5

6.3.6 beziersurf
Syntax:

beziersurf name nbupoles nbvolpes pole, [weight]

Use this command to create a bezier surface, rational or non-rational. First give the numbers of poles in the u and
v directions.

Then give the poles in the following order: pole(1, 1), pole(nbupoles, 1), pole(1, nbvpoles) and pole(nbupoles,
nbvpoles).

Weights may be omitted, but if you give one weight you must give all of them.

Example:

a non-rational degree 2,3 surface
beziersurf s 3 4 \
00010052000\

0 10 2 10 10 3 20 10 2 \

0 20 10 10 20 20 20 20 10 \

0 30 0 10 30 0 20 30 O

(c) Open CASCADE 2018

6.3 Surface creation 99

6.3.7 bsplinesurf, upbsplinesurf, vpbsplinesurf, uvpbsplinesurf
Syntax:

bsplinesurf name udegree nbuknots uknot umult ... nbvknot vknot
vmult ... Xy z w ...

upbsplinesurf ...

vpbsplinesurf ...

uvpbsplinesurf ...

+ bsplinesurf generates bspline surfaces;
 upbsplinesurf creates a bspline surface periodic in u;
 vpbsplinesurf creates one periodic in v;

» uvpbsplinesurf creates one periodic in uv.

The syntax is similar to the bsplinecurve command. First give the degree in u and the knots in u with their multiplici-
ties, then do the same in v. The poles follow. The number of poles is the product of the number in u and the number
inv.

See bsplinecurve to compute the number of poles, the poles are first given in U as in the beziersurf command. You
must give weights if the surface is rational.

Example:

create a bspline surface of degree 1 2
with two knots in U and three in V
bsplinesurf s \

120212\

3031123\

00110051\

10 2 1 10 10 3 1\

20 10 1 10 20 20 1\

30 01 10 30 01

o oo oN

6.3.8 trim, trimu, trimv
Syntax:

trim newname name [ul u2 [vl v2]]
trimu newname name
trimv newname name

The trim commands create trimmed curves or trimmed surfaces. Note that trimmed curves and surfaces are classes
of the Geom package.

« trim creates either a new trimmed curve from a curve or a new trimmed surface in u and v from a surface.
* trimu creates a u-trimmed surface,

* trimv creates a v-trimmed surface.

After an initial trim, a second execution with no parameters given recreates the basis curve. The curves can be
either 2d or 3d. If the trimming parameters decrease and if the curve or surface is not periodic, the direction is
reversed.

Note that a trimmed curve or surface contains a copy of the basis geometry: modifying that will not modify the
trimmed geometry. Trimming trimmed geometry will not create multiple levels of trimming. The basis geometry will
be used.

Example:

(c) Open CASCADE 2018

6.3 Surface creation 100

create a 3d circle
circle ¢ 0 0 0 10

trim it, use the same variable, the original is
deleted
trim c ¢ 0 pi/2

the original can be recovered!
trim orc c

trim again
trim ¢ ¢ pi/4 pi/2

the original is not the trimmed curve but the basis
trim orc c

as the circle is periodic, the two following commands
are identical

trim cc c pi/2 0

trim cc ¢ pi/2 2xpi

trim an infinite cylinder

cylinder cy 10
trimv cy cy 0 50

6.3.9 offset

Syntax:

offset name basename distance [dx dy dz]

Creates offset curves or surfaces at a given distance from a basis curve or surface. Offset curves and surfaces are
classes from the x*Geom xpackage.

The curve can be a 2d or a 3d curve. To compute the offsets for a 3d curve, you must also give a vector dx,dy,dz.
For a planar curve, this vector is usually the normal to the plane containing the curve.

The offset curve or surface copies the basic geometry, which can be modified later.

Example:

graphic demonstration that the outline of a torus
is the offset of an ellipse

smallview +X+Y

dset angle pi/6

torus t 0 0 0 0 cos(angle) sin(angle) 50 20

fit

ellipse e 0 0 0 50 50xsin(angle)

note that the distance can be negative

offset 11 e 20 0 0 1

6.3.10 revsurf

Syntax:

revsurf name curvename x y z dx dy dz

Creates a surface of revolution from a 3d curve.

A surface of revolution or revolved surface is obtained by rotating a curve (called the meridian) through a complete
revolution about an axis (referred to as the axis of revolution). The curve and the axis must be in the same plane (the
reference plane of the surface). Give the point of origin x,y,z and the vector dx,dy,dz to define the axis of revolution.

To parameterize a surface of revolution: u is the angle of rotation around the axis. lts origin is given by the position
of the meridian on the surface. v is the parameter of the meridian.

Example:

another way of creating a torus like surface
circle ¢ 50 0 0 20
revsurf s ¢ 0 0 0 0 1 0

(c) Open CASCADE 2018

6.4 Curve and surface modifications 101

6.3.11 extsurf

Syntax:

extsurf newname curvename dx dy dz

Creates a surface of linear extrusion from a 3d curve. The basis curve is swept in a given direction,the direction of
extrusion defined by a vector.

In the syntax, dx,dy,dz gives the direction of extrusion.

To parameterize a surface of extrusion: u is the parameter along the extruded curve; the v parameter is along the
direction of extrusion.

Example:

an elliptic cylinder
ellipse e 0 0 0 10 5
extsurf s e 0 0 1

to make it finite
trimv s s 0 10

6.3.12 convert
Syntax:

convert newname name

Creates a 2d or 3d NURBS curve or a NURBS surface from any 2d curve, 3d curve or surface. In other words,
conics, beziers and bsplines are turned into NURBS. Offsets are not processed.

Example:

turn a 2d arc of a circle into a 2d NURBS
circle ¢ 0 0 5

trim ¢ ¢ 0 pi/3

convert cl c

an easy way to make a planar bspline surface
plane p

trimpp -1 1 -11

convert pl p

Note that offset curves and surfaces are not processed by this command.

6.4 Curve and surface modifications

Draw provides commands to modify curves and surfaces, some of them are general, others restricted to bezier
curves or bsplines.

General modifications:

» Reversing the parametrization: reverse, ureverse, vreverse

Modifications for both bezier curves and bsplines:

« Exchanging U and V on a surface: exchuv
+ Segmentation: segment, segsur
* Increasing the degree: incdeg, incudeg, incvdeg

* Moving poles: cmovep, movep, movecolp, moverowp

(c) Open CASCADE 2018

6.4 Curve and surface modifications 102

Modifications for bezier curves:

« Adding and removing poles: insertpole, rempole, remcolpole, remrowpole

Modifications for bspline:

+ Inserting and removing knots: insertknot, remknot, insertuknot, remuknot, insetvknot, remvknot

» Modifying periodic curves and surfaces: setperiodic, setnotperiodic, setorigin, setuperiodic, setunotpe-
riodic, setuorigin, setvperiodic, setvhotperiodic, setvorigin

6.4.1 reverse, ureverse, vreverse
Syntax:

reverse curvename
ureverse surfacename
vreverse surfacename

The reverse command reverses the parameterization and inverses the orientation of a 2d or 3d curve. Note that
the geometry is modified. To keep the curve or the surface, you must copy it before modification.

ureverse or vreverse reverse the u or v parameter of a surface. Note that the new parameters of the curve may
change according to the type of curve. For instance, they will change sign on a line or stay 0,1 on a bezier.

Reversing a parameter on an analytical surface may create an indirect coordinate system.

Example:

reverse a trimmed 2d circle
circle ¢ 0 0 5

trim ¢ ¢ pi/4 pi/2

reverse c

dumping ¢ will show that it is now trimmed between
3+pi/2 and 7xpi/4 i.e. 2xpi-pi/2 and 2+pi-pi/4

6.4.2 exchuv
Syntax:

exchuv surfacename

For a bezier or bspline surface this command exchanges the u and v parameters.

Example:

exchanging u and v on a spline (made from a cylinder)
cylinder ¢ 5

trimv ¢ ¢ 0 10

convert cl c

exchuv cl

6.4.3 segment, segsur
Syntax:

segment curve Ufirst Ulast
segsur surface Ufirst Ulast Vfirst Vlast

(c) Open CASCADE 2018

6.4 Curve and surface modifications 103

segment and segsur segment a bezier curve and a bspline curve or surface respectively.

These commands modify the curve to restrict it between the new parameters: Ufirst, the starting point of the modified
curve, and Ulast, the end point. Ufirstis less than Ulast.

This command must not be confused with trim which creates a new geometry.

Example:

segment a bezier curve in half
beziercurve ¢ 3 0 0 0 10 0 0 10 10 O
segment ¢ ufirst ulast

6.4.4 iincudeg, incvdeg
Syntax:

incudeg surfacename newdegree
incvdeg surfacename newdegree

incudeg and incvdeg increase the degree in the U or V parameter of a bezier or bspline surface.

Example:

make a planar bspline and increase the degree to 2 3
plane p

trimpp -1 1-11

convert pl p

incudeg pl 2

incvdeg pl 3

Note that the geometry is modified.

6.45 cmovep, movep, movecolp, moverowp
Syntax:

cmovep curve index dx dy [dz]

movep surface uindex vindex dx dy dz
movecolp surface uindex dx dy dz
moverowp surface vindex dx dy dz

move methods translate poles of a bezier curve, a bspline curve or a bspline surface.

« cmovep and movep translate one pole with a given index.

* movecolp and moverowp translate a whole column (expressed by the uindex) or row (expressed by the
vindex) of poles.

Example:

start with a plane

transform to bspline, raise degree and add relief
plane p

trim p p -10 10 -10 10

convert pl p
incud pl 2
incvd pl 2
movecolp pl
moverowp pl
movep pl 2 2 0 0 5

2005
2005

(c) Open CASCADE 2018

6.4 Curve and surface modifications 104

6.4.6 insertpole, rempole, remcolpole, remrowpole
Syntax:

insertpole curvename index x y [z] [weight]
rempole curvename index

remcolpole surfacename index

remrowpole surfacename index

insertpole inserts a new pole into a 2d or 3d bezier curve. You may add a weight for the pole. The default value for
the weight is 1. The pole is added at the position after that of the index pole. Use an index 0 to insert the new pole
before the first one already existing in your drawing.

rempole removes a pole from a 2d or 3d bezier curve. Leave at least two poles in the curves.

remcolpole and remrowpole remove a column or a row of poles from a bezier surface. A column is in the v
direction and a row in the u direction The resulting degree must be at least 1; i.e there will be two rows and two
columns left.

Example:

start with a segment, insert a pole at end
then remove the central pole

beziercurve ¢ 2 0 0 0 10 0 O

insertpole ¢ 2 10 10 O

rempole c 2

6.4.7 insertknot, insertuknot, insertvknot
Syntax:

insertknot name knot [mult = 1] [knot mult ...]
insertuknot surfacename knot mult
insertvknot surfacename knot mult

insertknot inserts knots in the knot sequence of a bspline curve. You must give a knot value and a target multiplicity.
The default multiplicity is 1. If there is already a knot with the given value and a multiplicity lower than the target
one, its multiplicity will be raised.

insertuknot and insertvknot insert knots in a surface.

Example:

create a cylindrical surface and insert a knot
cylinder ¢ 10

trim ¢ ¢ 0 pi/2 0 10

convert cl c

insertuknot cl pi/4 1

6.4.8 remknot, remuknot, remvknot

Syntax:

remknot index [mult] [tol]
remuknot index [mult] [tol]
remvknot index [mult] [tol]

remknot removes a knot from the knot sequence of a curve or a surface. Give the index of the knot and optionally,
the target multiplicity. If the target multiplicity is not 0, the multiplicity of the knot will be lowered. As the curve may
be modified, you are allowed to set a tolerance to control the process. If the tolerance is low, the knot will only be
removed if the curve will not be modified.

By default, if no tolerance is given, the knot will always be removed.

Example:

(c) Open CASCADE 2018

6.5 Transformations 105

bspline circle, remove a knot
circle ¢ 0 0 5

convert cl c

incd cl1 5

remknot cl 2

Note that Curves or Surfaces may be modified.

6.4.9 setperiodic, setnotperiodic, setuperiodic, setunotperiodic, setvperiodic, setvnotperiodic
Syntax:

setperiodic curve
setnotperiodic curve
setuperiodic surface
setunotperiodic surface
setvperiodic surface
setvnotperiodic surface

setperiodic turns a bspline curve into a periodic bspline curve; the knot vector stays the same and excess poles
are truncated. The curve may be modified if it has not been closed. setnotperiodic removes the periodicity of a
periodic curve. The pole table mau be modified. Note that knots are added at the beginning and the end of the knot
vector and the multiplicities are knots set to degree+1 at the start and the end.

setuperiodic and setvperiodic make the u or the v parameter of bspline surfaces periodic; setunotperiodic, and
setvnotperiodic remove periodicity from the u or the v parameter of bspline surfaces.

Example:

a circle deperiodicized
circle ¢ 0 0 5

convert cl c
setnotperiodic cl

6.4.10 setorigin, setuorigin, setvorigin
Syntax:

setorigin curvename index
setuorigin surfacename index
setuorigin surfacename index

These commands change the origin of the parameters on periodic curves or surfaces. The new origin must be an
existing knot. To set an origin other than an existing knot, you must first insert one with the insertknot command.

Example:

a torus with new U and V origins
torus t 20 5

convert tl t

setuorigin tl 2

setvorigin tl 2

6.5 Transformations

Draw provides commands to apply linear transformations to geometric objects: they include translation, rotation,
mirroring and scaling.

6.5.1 translate, dtranslate

Syntax:

(c) Open CASCADE 2018

6.5 Transformations 106

translate name [names ...] dx dy dz
2dtranslate name [names ...] dx dy

The Translate command translates 3d points, curves and surfaces along a vector dx,dy,dz. You can translate more
than one object with the same command.

For 2d points or curves, use the 2dtranslate command.

Example:

3d tranlation

point p 10 20 30
circle ¢ 10 20 30 5
torus t 10 20 30 5 2
translate p ¢ t 0 0 15

NOTE Objects are modified by this command.

6.5.2 rotate, 2drotate

Syntax:
rotate name [name ...] x y z dx dy dz angle
2drotate name [name ...] x y angle

The rotate command rotates a 3d point curve or surface. You must give an axis of rotation with a point x,y,z, a
vector dx,dy,dz and an angle in degrees.

For a 2d rotation, you need only give the center point and the angle. In 2d or 3d, the angle can be negative.

Example:

make a helix of circles. create a script file with
this code and execute it using x*sourcexx*.

circle c0O 10 0 0 3

for {set 1 1} {$i <= 10} {incr i} {

copy clexpr $i-1] c$i

translate c$i 0 0 3

rotate ¢$1 0 0 0 0 0 1 36

}

6.5.3 pmirror, Imirror, smirror, dpmirror, dimirror

Syntax:

pmirror name [names ...] Xy z

Imirror name [names ...] x y z dx dy dz
smirror name [names ...] x y z dx dy dz
2dpmirror name [names ...] X y
2dlmirror name [names ...] x y dx dy

The mirror commands perform a mirror transformation of 2d or 3d geometry.

» pmirror is the point mirror, mirroring 3d curves and surfaces about a point of symmetry.
* Imirror is the line mirror commamd, mirroring 3d curves and surfaces about an axis of symmetry.

« smirror is the surface mirror, mirroring 3d curves and surfaces about a plane of symmetry. In the last case,
the plane of symmetry is perpendicular to dx,dy,dz.

+ 2dpmirror is the point mirror in 2D.

» 2dImirror is the axis symmetry mirror in 2D.

Example:

(c) Open CASCADE 2018

6.6 Curve and surface analysis

107

build 3 images of a torus
torus t 10 10 10 1 2 3 51
copy t tl

pmirror t1 0 0 O

copy t t2

Imirror t2 0 0 0 1 0 O

copy t t3

smirror t3 0 0 0 1 0 O

6.5.4 pscale, dpscale

Syntax:
pscale name [name ...] Xy z s
2dpscale name [name ...] X y s

The pscale and 2dpscale commands transform an object by point scaling. You must give the center and the scaling
factor. Because other scalings modify the type of the object, they are not provided. For example, a sphere may be

transformed into an ellipsoid. Using a scaling factor of -1 is similar to using pmirror.

Example:

double the size of a sphere
sphere s 0 0 0 10
pscale s 0 0 0 2

6.6 Curve and surface analysis

Draw provides methods to compute information about curves and surfaces:

+ coord to find the coordinates of a point.

» cvalue and 2dcvalue to compute points and derivatives on curves.

« svalue to compute points and derivatives on a surface.

* localprop and minmaxcurandif to compute the curvature on a curve.
» parameters to compute (u,v) values for a point on a surface.

» proj and 2dproj to project a point on a curve or a surface.

+ surface_radius to compute the curvature on a surface.

6.6.1 coord
Syntax:

coord P x y [z]

Sets the x, y (and optionally z) coordinates of the point P.

Example:

translate a point
point p 10 5 5
translate p 5 0 0
coord p x y 2z

x value is 15

(c) Open CASCADE 2018

6.6 Curve and surface analysis 108

6.6.2 cvalue, 2dcvalue
Syntax:

cvalue curve U x y z [dlx dly dlz [d2x d2y d2z]]
2dcvalue curve U x y [dlx dly [d2x d2y]]

For a curve at a given parameter, and depending on the number of arguments, cvalue computes the coordinates in
X,,Z, the first derivative in d71x,d7y,d1z and the second derivative in d2x,d2y,d2z.

Example:

Let on a bezier curve at parameter 0 the point is the first pole; the first derivative is the vector to the second pole
multiplied by the degree; the second derivative is the difference first to the second pole, second to the third pole
multipied by degree-1 :

2dbeziercurve ¢ 4 0 01 1 21 30
2dcvalue ¢ 0 x y dlx dly d2x d2y

values of x y dlx dly d2x d2y
are 0 0 3 3 0 -6

6.6.3 svalue
Syntax:

svalue surfname U v x y z [dux duy duz dvx dvy dvz [d2ux d2uy d2uz d2vx d2vy d2vz d2uvx d2uvy d2uvz]]

Computes points and derivatives on a surface for a pair of parameter values. The result depends on the number of
arguments. You can compute the first and the second derivatives.

Example:

display points on a sphere
sphere s 10

for {dset t 0} {[dval t] <= 1} {dset t t+0.01} {
svalue s t*2+pi t*pi-pi/2 x vy z
point . x vy z

}

6.6.4 localprop, minmaxcurandinf
Syntax:

localprop curvename U
minmaxcurandinf curve

localprop computes the curvature of a curve. minmaxcurandinf computes and prints the parameters of the points
where the curvature is minimum and maximum on a 2d curve.

Example:

show curvature at the center of a bezier curve
beziercurve ¢ 3 0 0 0 10 2 0 20 0 O

localprop c 0.5

== Curvature : 0.02

6.6.5 parameters
Syntax:

parameters surf/curve x y z U [V]

(c) Open CASCADE 2018

6.7 Intersections 109

Returns the parameters on the surface of the 3d point x,y,z in variables v and v. This command may only be used
on analytical surfaces: plane, cylinder, cone, sphere and torus.

Example:

Compute parameters on a plane
plane p 0 0 10 1 1 O

parameters p 5 5 5 u v

the values of u and v are : 0 5

6.6.6 proj, 2dproj
Syntax:

proj name x y z
2dproj name xy

Use proj to project a point on a 3d curve or a surface and 2dproj for a 2d curve.

The command will compute and display all points in the projection. The lines joining the point to the projections are
created with the names xext_1, ext_2, ... x

Example:

Let us project a point on a torus

torus t 20 5
proj t 30 10 7
== ext_1 ext_2 ext_3 ext_4

6.6.7 surface_radius
Syntax:

surface_radius surface u v [cl c2]

Computes the main curvatures of a surface at parameters *(u,v)*. If there are extra arguments, their curvatures are
stored in variables ¢7 and c2.

Example:

Let us compute curvatures of a cylinder:

cylinder ¢ 5

surface_radius c pi 3 cl c2

== Min Radius of Curvature : -5

== Min Radius of Curvature : infinite

6.7 Intersections

« intersect computes intersections of surfaces;
+ 2dintersect computes intersections of 2d curves.

+ intconcon computes intersections of 2d conic curves.

6.7.1 intersect
Syntax:

intersect name surfacel surface2

(c) Open CASCADE 2018

6.8 Approximations 110

Intersects two surfaces; if there is one intersection curve it will be named name, if there are more than one they will
be named name_1, name_2, ...

Example:

create an ellipse
cone c 45 0

plane p 0 0 40 0 1 5
intersect e c p

6.7.2 2dintersect
Syntax:

2dintersect curvel [curve2] [-tol tol] [-state]

Displays the intersection points between 2d curves. Options: -tol - allows changing the intersection tolerance
(default value is 1.e-3); -state - allows printing the intersection state for each point.

Example:

intersect two 2d ellipses

ellipse el 0 0 5 2

ellipse e2 0 0 01 5 2

2dintersect el e2 -tol 1l.e-10 -state

6.7.3 intconcon
Syntax:

intconcon curvel curve2

Displays the intersection points between two 2d curves. Curves must be only conic sections: 2d lines, circles,
ellipses, hyperbolas, parabolas. The algorithm from IntAna2d_Analntersection is used.

Example:

intersect two 2d ellipses
ellipse el 0 0 5 2

ellipse e2 0 0 0 1 5 2
intconcon el e2

6.8 Approximations

Draw provides command to create curves and surfaces by approximation.
+ 2dapprox fits a curve through 2d points;
+ appro fits a curve through 3d points;

+ surfapp and grilapp fit a surface through 3d points;

« 2dinterpolate interpolates a curve.

6.8.1 appro, dapprox
Syntax:

appro result nbpoint [curve]
2dapprox result nbpoint [curve / x1 yl x2 y2]

(c) Open CASCADE 2018

6.9 Projections 111

These commands fit a curve through a set of points. First give the number of points, then choose one of the three
ways available to get the points. If you have no arguments, click on the points. If you have a curve argument or a
list of points, the command launches computation of the points on the curve.

Example:

Let us pick points and they will be fitted

2dapprox c 10

6.8.2 surfapp, grilapp

Syntax:

surfapp name nbupoints nbvpoints x y z
grilapp name nbupoints nbvpoints xo dx yo dy zll z12 ...

« surfapp fits a surface through an array of u and v points, nbupoints:xnbvpoints.
« grilapp has the same function, but the x,y coordinates of the points are on a grid starting at x0,y0 with steps
dx,dy.

Example:

a surface using the same data as in the beziersurf
example sect 4.4

surfapp s 3 4 \

00010052000\

0 10 2 10 10 3 20 10 2 \

0 20 10 10 20 20 20 20 10 \

0 30 0 10 30 0 20 30 O

6.9 Projections
Draw provides commands to project points/curves on curves/surfaces.
* proj projects point on the curve/surface (see proj command description);

* project projects 3D curve on the surface (see project command description);

 projponf projects point on the face.

6.9.1 projponf
Syntax:

projponf face pnt [extrema flag: -min/-max/-minmax] [extrema algo: -g(grad) /-t (tree)]

projponf projects point pnt on the face face. You can change the Extrema options:

+ To change the Extrema search algorithm use the following options:
-g - for Grad algorithm;
-t - for Tree algorithm;

+ To change the Extrema search solutions use the following options:
-min - to look for Min solutions;
-max - to look for Max solutions;
-minmax - to look for MinMax solutions.

Example

(c) Open CASCADE 2018

6.10 Constraints

112

plane p 0 0 0 0 0 1
mkface f p
point pnt 5 5 10

projponf f pnt
proj dist = 10
uvproj = 5 5
pproj = 55 0

6.10 Constraints

« cirtang constructs 2d circles tangent to curves;

« lintan constructs 2d lines tangent to curves.

6.10.1 cirtang

Syntax:

cirtang cname curve/point/radius curve/point/radius curve/point/radius

Builds all circles satisfying the three constraints which are either a curve (the circle must be tangent to that curve),
a point (the circle must pass through that point), or a radius for the circle. Only one constraint can be a radius. The

solutions will be stored in variables name_1, name_2, etc.

Example:

a point, a line and a radius. 2 solutions
point p 0 O

line 1 10 0 -1 1

cirtang c p 1 4

== c_1 c_2
6.10.2 lintan
Syntax:

lintan name curve curve [angle]

Builds all 2d lines tangent to two curves. If the third angle argument is given the second curve must be a line and
lintan will build all lines tangent to the first curve and forming the given angle with the line. The angle is given in

degrees. The solutions are named name_1, name_2, etc.

Example:

lines tangent to 2 circles, 4 solutions
circle cl -10 0 10

circle c2 10 0 5

lintan 1 cl c2

lines at 15 degrees tangent to a circle and a line,
solutions: 11_1 11_2

circle cl1 =10 0 1

line 1 2011

lintan 11 cl1 1 15

6.11 Display

Draw provides commands to control the display of geometric objects. Some display parameters are used for all

objects, others are valid for surfaces only, some for bezier and bspline only, and others for bspline only.

On curves and surfaces, you can control the mode of representation with the dmode command. You can con-
trol the parameters for the mode with the defle command and the discr command, which control deflection and

discretization respectively.

(c) Open CASCADE 2018

6.11 Display 113

On surfaces, you can control the number of isoparametric curves displayed on the surface with the nbiso command.

On bezier and bspline curve and surface you can toggle the display of the control points with the clpoles and
shpoles commands.

On bspline curves and surfaces you can toggle the display of the knots with the shknots and clknots commands.

6.11.1 dmod, discr, defle

Syntax:

dmode name [name ...] u/d

discr name [name ...] nbintervals
defle name [name ...] deflection

dmod command allows choosing the display mode for a curve or a surface.

In mode u, or uniform deflection, the points are computed to keep the polygon at a distance lower than the deflection
of the geometry. The deflection is set with the defle command. This mode involves intensive use of computational
power.

In d, or discretization mode, a fixed number of points is computed. This number is set with the discr command. This
is the default mode. On a bspline, the fixed number of points is computed for each span of the curve. (A span is the
interval between two knots).

If the curve or the isolines seem to present too many angles, you can either increase the discretization or lower the
deflection, depending on the mode. This will increase the number of points.

Example:

increment the number of points on a big circle
circle ¢ 0 0 50 50
discr 100

change the mode
dmode c u

6.11.2 nbiso

Syntax:

nbiso name [names...] nuiso nviso

Changes the number of isoparametric curves displayed on a surface in the U and V directions. On a bspline surface,
isoparametric curves are displayed by default at knot values. Use nbiso to turn this feature off.

Example:

Let us display 35 meridians and 15 parallels on a sphere:
sphere s 20

nbiso s 35 15

6.11.3 clpoles, shpoles

Syntax:

clpoles name
shpoles name

On bezier and bspline curves and surfaces, the control polygon is displayed by default: clpoles erases it and shpoles
restores it.
Example:

Let us make a bezier curve and erase the poles

(c) Open CASCADE 2018

6.11 Display 114

beziercurve ¢ 3 0 0 0 10 0 0 10 10 O
clpoles c

6.11.4 clknots, shknots
Syntax:

clknots name
shknots name

By default, knots on a bspline curve or surface are displayed with markers at the points with parametric value equal
to the knots. clknots removes them and shknots restores them.

Example:

hide the knots on a bspline curve
bsplinecurve bc 2 3 0 3 1 1 2 3\
10071 707130810071
clknots bc

(c) Open CASCADE 2018

7 Topology commands 115

7

Topology commands

Draw provides a set of commands to test OCCT Topology libraries. The Draw commands are found in the DRAW«-
EXE executable or in any executable including the BRepTest commands.

Topology defines the relationship between simple geometric entities, which can thus be linked together to represent
complex shapes. The type of variable used by Topology in Draw is the shape variable.

The different topological shapes include:

+ COMPOUND: A group of any type of topological object.
+ COMPSOLID: A set of solids connected by their faces. This expands the notions of WIRE and SHELL to

solids.

» SOLID: A part of space limited by shells. It is three dimensional.
» SHELL: A set of faces connected by their edges. A shell can be open or closed.

* FACE: In 2d, a plane; in 3d, part of a surface. Its geometry is constrained (trimmed) by contours. It is two

dimensional.

» WIRE: A set of edges connected by their vertices. It can be open or closed depending on whether the edges

are linked or not.

+ EDGE: A topological element corresponding to a restrained curve. An edge is generally limited by vertices. It

has one dimension.

* VERTEX: A topological element corresponding to a point. It has a zero dimension.

Shapes are usually shared. copy will create a new shape which shares its representation with the original. Nonethe-
less, two shapes sharing the same topology can be moved independently (see the section on transformation).

The following topics are covered in the eight sections of this chapter:

71

» Basic shape commands to handle the structure of shapes and control the display.

» Curve and surface topology, or methods to create topology from geometry and vice versa.
» Primitive construction commands: box, cylinder, wedge etc.

» Sweeping of shapes.

» Transformations of shapes: translation, copy, etc.

» Topological operations, or booleans.

+ Drafting and blending.

+ Defeaturing.

+ Analysis of shapes.

Basic topology

The set of basic commands allows simple operations on shapes, or step-by-step construction of objects. These
commands are useful for analysis of shape structure and include:

+ isos and discretisation to control display of shape faces by isoparametric curves .
» orientation, complement and invert to modify topological attributes such as orientation.

» explode, exwire and nbshapes to analyze the structure of a shape.

(c) Open CASCADE 2018

user_guides__modeling_data.html#occt_modat_5

7.1 Basic topology 116

« emptycopy, add, compound to create shapes by stepwise construction.
In Draw, shapes are displayed using isoparametric curves. There is color coding for the edges:

» ared edge is an isolated edge, which belongs to no faces.
* agreen edge is a free boundary edge, which belongs to one face,

+ a yellow edge is a shared edge, which belongs to at least two faces.

7.1.1 isos, discretisation
Syntax:

isos [name ...][nbisos]
discretisation nbpoints
Determines or changes the number of isoparametric curves on shapes.

The same number is used for the u and v directions. With no arguments, isos prints the current default value. To
determine, the number of isos for a shape, give it name as the first argument.

discretisation changes the default number of points used to display the curves. The default value is 30.

Example:

Display only the edges (the wireframe)
isos 0

Warning: don’t confuse isos and discretisation with the geometric commands nbisos and discr.

7.1.2 orientation, complement, invert, normals, range
Syntax:

orientation name [name ...] F/R/E/I
complement name [name ...]

invert name

normals s (length = 10), disp normals
range name value value

+ orientation — assigns the orientation of simple and complex shapes to one of the following four values: FO«
RWARD, REVERSED, INTERNAL, EXTERNAL.

» complement — changes the current orientation of shapes to its complement: FORWARD to REVERSED and
INTERNAL to EXTERNAL.

« invert — creates a copy of the original shape with a reversed orientation of all subshapes. For example, it may
be useful to reverse the normals of a solid.

» xnormalss* — returns the assignment of colors to orientation values.

* range — defines the length of a selected edge by defining the values of a starting point and an end point.

Example:

to invert normals of a box
box b 10 20 30

normals b 5

invert b

normals b 5

to assign a value to an edge
box bl 10 20 30

(c) Open CASCADE 2018

7.1 Basic topology 117

to define the box as edges

explode bl e

b_1b_2 b 3 b _4b.5b 6Db_70b.8Db 9 b 10 b _11 b_12

to define as an edge

makedge e 1

to define the length of the edge as starting from 0
and finishing at 1

range e 0 1

7.1.3 explode, exwire, nbshapes
Syntax:

explode name [C/So/Sh/F/W/E/V]
exwire name
nbshapes name

explode extracts subshapes from an entity. The subshapes will be named name_1, name_2, ... Note that they are
not copied but shared with the original.

With name only, explode will extract the first sublevel of shapes: the shells of a solid or the edges of a wire, for
example. With one argument, explode will extract all subshapes of that type: C for compounds, So for solids, Sh
for shells, Ffor faces, W for wires, E for edges, V for vertices.

exwire is a special case of explode for wires, which extracts the edges in an ordered way, if possible. Each edge,
for example, is connected to the following one by a vertex.

nbshapes counts the number of shapes of each type in an entity.

Example:

on a box
box b 10 20 30

whatis returns the type and various information
whatis b
= b is a shape SOLID FORWARD Free Modified

make one shell

explode b

whatis b_1

= b_1 is a shape SHELL FORWARD Modified Orientable
Closed

extract the edges b_1, ... , b_12
explode b e
==b_1 ... b_12

count subshapes
nbshapes b

Number of shapes in b
VERTEX : 8

EDGE : 12

WIRE : 6

FACE : 6

SHELL : 1

SOLID : 1

COMPSOLID : O
COMPOUND : 0

SHAPE : 34

7.1.4 emptycopy, add, compound
Syntax:

emptycopy [newname] name
add name toname
compound [name ...] compoundname

emptycopy returns an empty shape with the same orientation, location, and geometry as the target shape, but
with no sub-shapes. If the newname argument is not given, the new shape is stored with the same name. This

(c) Open CASCADE 2018

7.1 Basic topology 118

command is used to modify a frozen shape. A frozen shape is a shape used by another one. To modify it, you must
emptycopy it. Its subshape may be reinserted with the add command.

add inserts shape C into shape S. Verify that C and S reference compatible types of objects:

» Any Shape can be added to a Compound.

+ Only a Solid can be added to a CompSolid.

* Only a Shell can Edge or a Vertex can be added into a Solid.
» Only a Face can be added to a Shell.

* Only a Wire and Vertex can be added in a Solid.

* Only an Edge can be added to a Wire.

» Only a Vertex can be added to an Edge.

» Nothing can be added to a Vertex.

emptycopy and add should be used with care.

On the other hand, compound is a safe way to achieve a similar result. It creates a compound from shapes. If no
shapes are given, the compound is empty.

Example:

a compound with three boxes
box b1 0 0 0 1 1
box b2 30 0 1 1
box b3 6 0 0 1 1
compound bl b2 b

1
1
1

3 c

7.1.5 compare

Syntax:

compare shapel shape2

compare compares the two shapes shape1 and shape2 using the methods TopoDS_Shape::IsSame() and Topo«
DS _Shape::IsEqual().

Example

box bl 1 11
copy bl b2
compare bl b2

same shapes

equal shapes
orientation b2 R
compare bl b2

same shapes
box b2 1 11

compare bl b2
shapes are not same

7.1.6 issubshape
Syntax:

issubshape subshape shape

issubshape checks if the shape subshape is sub-shape of the shape shape and gets its index in the shape.

Example

(c) Open CASCADE 2018

7.2 Curve and surface topology 119

box b 1 11

explode b f

issubshape b_2 b

b_2 is sub-shape of b. Index in the shape: 2.

7.2 Curve and surface topology

This group of commands is used to create topology from shapes and to extract shapes from geometry.

+ To create vertices, use the vertex command.

« To create edges use, the edge, mkedge commands.

+ To create wires, use the wire, polyline, polyvertex commands.

» To create faces, use the mkplane, mkface commands.

» To extract the geometry from edges or faces, use the mkcurve and mkface commands.

+ To extract the 2d curves from edges or faces, use the pcurve command.

7.21 vertex

Syntax:

vertex name [x y z / p edge]

Creates a vertex at either a 3d location x,y,z or the point at parameter p on an edge.

Example:

vertex vl 10 20 30

7.2.2 mkpoint

Syntax:

mkpoint name vertex

Creates a point from the coordinates of a given vertex.

Example:

mkpoint p vl

7.2.3 edge, mkedge, uisoedge, visoedge
Syntax:

edge name vertexl vertex2
mkedge edge curve [surface] [pfirst plast] [vfirst [pfirst] vlast [plast]]
uisoedge edge face u vl v2
visoedge edge face v ul u2

+ edge creates a straight line edge between two vertices.

+ mkedge generates edges from curves<.Two parameters can be given for the vertices: the first and last
parameters of the curve are given by default. Vertices can also be given with their parameters, this option
allows blocking the creation of new vertices. If the parameters of the vertices are not given, they are computed
by projection on the curve. Instead of a 3d curve, a 2d curve and a surface can be given.

(c) Open CASCADE 2018

7.2 Curve and surface topology 120

Example:

straight line edge
vertex vl 10 0 0
vertex v2 10 10 0
edge el vl v2

make a circular edge
circle ¢ 0 0 0 5
mkedge e2 c 0 pi/2

A similar result may be achieved by trimming the curve
The trimming is removed by mkedge

trim ¢ ¢ 0 pi/2

mkedge e2 c

» visoedge and uisoedge are commands that generate a uiso parameter edge or a viso parameter edge.

Example:

to create an edge between vl and v2 at point u
to create the example plane

plane p

trimpp 0101

convert p p
incudeg p 3
incvdeg p 3
movep p 2 2
movep p 3 3
mkface p p
to create the edge in the plane at the u axis point
0.5, and between the v axis points v=0.2 and v =0.8
uisoedge e p 0.5 0.20 0.8

1
0.5

o o

0
0

7.2.4 wire, polyline, polyvertex

Syntax:

wire wirename el/wl [e2/w2 ...]
polyline name x1 yl zl x2 y2 z2
polyvertex name vl v2 ...

wire creates a wire from edges or wires. The order of the elements should ensure that the wire is connected, and
vertex locations will be compared to detect connection. If the vertices are different, new edges will be created to
ensure topological connectivity. The original edge may be copied in the new one.

polyline creates a polygonal wire from point coordinates. To make a closed wire, you should give the first point
again at the end of the argument list.

polyvertex creates a polygonal wire from vertices.

Example:

create two polygonal wires

glue them and define as a single wire
polyline wl 0 0 0 10 0 0 10 10 O
polyline w2 10 10 0 0 10 0 0 0 O

wire w wl w2

7.2.5 profile
Syntax

profile name [code values] [code values]

profile builds a profile in a plane using a moving point and direction. By default, the profile is closed and a face is
created. The original point is 0 0, and direction is 1 0 situated in the XY plane.

(c) Open CASCADE 2018

7.2 Curve and surface topology 121

Code | Values xx +xAction

(0] XYZ Sets the origin of the plane

P DX DY DZ UX UY UZ | Sets the normal and X of the plane
F XY Sets the first point

X DX Translates a point along X

Y DY Translates a point along Y

L DL Translates a point along direction
XX X Sets point X coordinate

YY Y Sets point Y coordinate

T DX DY Translates a point

TT XY Sets a point

R Angle Rotates direction

RR Angle Sets direction

D DX DY Sets direction

IX X Intersects with vertical

Y Y Intersects with horizontal

C Radius Angle Arc of circle tangent to direction

Codes and values are used to define the next point or change the direction. When the profile changes from a
straight line to a curve, a tangent is created. All angles are in degrees and can be negative.

The point [code values] can be repeated any number of times and in any order to create the profile contour.

Suffix Action

No suffix | Makes a closed face
w Make a closed wire
ww Make an open wire

The profile shape definition is the suffix; no suffix produces a face, wis a closed wire, ww is an open wire.
Code letters are not case-sensitive.

Example:

to create a trianglular plane using a vertex at the
origin, in the xy plane
profile p O 0 00X 1Y O0x1yl

Example:
to create a contour using the different code
possibilities

two vertices in the xy plane
profile p F 1 0 x 2y 1 ww

to view from a point normal to the plane
top

add a circular element of 45 degrees
profile p F 1 0 x 2y 1lcl 45 ww

add a tangential segment with a length value 1
profile p F1 0 x 2y 1lcli451 1 ww

add a vertex with xy values of 1.5 and 1.5
profile p F 1 0x 2y 1lcl45 11ttt 1.51.5 ww

add a vertex with the x value 0.2, y value is constant
profile p F 1 0 x 2y 1cl4511¢tt 1.5 1.5 xx 0.2 ww

add a vertex with the y value 2 x value is constant
profile p F 1 0 x 2y 1lcl4511¢tt 1.51.5yy 2 ww

(c) Open CASCADE 2018

7.2 Curve and surface topology 122

add a circular element with a radius value of 1 and a circular value of 290 degrees
profile p F1 0 x 2y 1lcl1l451 1+ttt 1.51.5xx 0.2 yy 2 c 1 290

wire continues at a tangent to the intersection x = 0
profile p F1 0 x 2y 1lc1l4511¢tt 1.51.5xx 0.2 yy 2 c 1 290 ix 0 ww

continue the wire at an angle of 90 degrees until it intersects the y axis at y= -0.3
profile p F 1 0 x 2y 1lcl1l451 1ttt 1.51.5xx 0.2 yy 2 c 1 290 ix 0 r 90 ix -0.3 ww

#close the wire
profile p F 1 0 x 2y 1lcl4511¢tt 1.51.5xx 0.2 yy 2 c 1290 ix 0 r 90 ix -0.3 w

to create the plane with the same contour
profile p F1 0 x 2y 1lc1l4511¢tt 1.51.5xx 0.2 yy 2 c 1 290 ix 0 r 90 ix -0.3

7.2.6 bsplineprof
Syntax:

bsplineprof name [S face] [W WW]

« for an edge : <digitizes> ... <mouse button 2>

+ to end profile : <mouse button 3>

Builds a profile in the XY plane from digitizes. By default the profile is closed and a face is built.

bsplineprof creates a 2d profile from bspline curves using the mouse as the input. MB1 creates the points, MB2
finishes the current curve and starts the next curve, MB3 closes the profile.

The profile shape definition is the suffix; no suffix produces a face, w is a closed wire, ww is an open wire.

Example:

#to view the xy plane

top

#to create a 2d curve with the mouse
bsplineprof res

click mbl to start the curve

click mbl to create the second vertex
click mbl to create a curve

#click mb2 to finish the curve and start a new curve

click mbl to create the second curve
click mb3 to create the face

7.2.7 mkoffset

mkoffset creates a parallel wire in the same plane using a face or an existing continuous set of wires as a reference.
The number of occurrences is not limited. The offset distance defines the spacing and the positioning of the
occurrences.

Syntax:

mkoffset result shape nboffset stepoffset [jointype(a/i) [alt]]

where:

* result - the base name for the resulting wires. The index of the occurrence (starting with 1) will be added to
this name, so the resulting wires will have the names - result 1, result 2 ...;

 shape - input shape (face or compound of wires);
* nboffset - the number of the parallel occurrences;

* stepoffset - offset distance between occurrences;

(c) Open CASCADE 2018

7.2 Curve and surface topology 123

* jointype(a/i) - join type (a for arc (default) and i for intersection);

« alt - altitude from the plane of the input face in relation to the normal to the face.

Example:

Create a box and select a face

box b 1 2 3

explode b f

Create three exterior parallel contours with an offset value of 2
mkoffset r b_1 3 2

wires r_1, r_2 and r_3 are created

Create three exterior parallel contours with an offset value of 2 without round corners
mkoffset r b_1 3 2 i

wires r_1, r_2 and r_3 are created

Create one interior parallel contour with an offset value of 0.4
mkoffset r b_1 1 -0.4

Note that on a concave input contour for an interior step mkoffset command may produce several wires which will
be contained in a single compound.

Example:

to create the example contour

profile p F 0O 0 x 2y 4 tt11¢tt 04w
creates an incoherent interior offset
mkoffset r p 1 -0.50

creates two incoherent wires

mkoffset r p 1 -0.55
r_1 is a compound of two wires

7.2.8 mkplane, mkface

Syntax:

mkplane name wire
mkface name surface [ufirst ulast vfirst vlast]

mkplane generates a face from a planar wire. The planar surface will be constructed with an orientation which
keeps the face inside the wire.

mkface generates a face from a surface. Parameter values can be given to trim a rectangular area. The default
boundaries are those of the surface.

Example:

make a polygonal face

polyline £ 0 0 0 20 0 O 20 10 0 10 10 0 10 20 0 0 20 0 0 0 O
mkplane f f

make a cylindrical face

cylinder g 10

trim g g -pi/3 pi/2 0 15

mkface g g

7.2.9 mkcurve, mksurface

Syntax:

mkcurve curve edge
mksurface name face

mkcurve creates a 3d curve from an edge. The curve will be trimmed to the edge boundaries.
mksurface creates a surface from a face. The surface will not be trimmed.

Example:

(c) Open CASCADE 2018

7.2 Curve and surface topology

124

make a line
vertex vl 0 0 O
vertex v2 10 0 0
edge e vl v2

7.210 pcurve
Syntax:

pcurve [name edgename] facename

Extracts the 2d curve of an edge on a face. If only the face is specified, the command extracts all the curves and
colors them according to their orientation. This is useful in checking to see if the edges in a face are correctly

oriented, i.e. they turn counter-clockwise. To make curves visible, use a fitted 2d view.

Example:

view the pcurves of a face
plane p

trimpp -1 1-11

mkface p p

av2d; # a 2d view

pcurve p

2dfit

7.2.11 chfi2d
Syntax:

chfi2d result face [edgel edge2 (F radius/CDD dl d2/CDA d ang)

Creates chamfers and fillets on 2D objects. Select two adjacent edges and:

* aradius value
* two respective distance values

+ adistance value and an angle

The radius value produces a fillet between the two faces.

The distance is the length value from the edge between the two selected faces in a normal direction.

Example:

Let us create a 2d fillet:

top
profile p x 2 y 2 x -2
chfi2d cfr p . . F 0.3

==Pick an object
#select an edge
==Pick an object
#select an edge

Let us create a 2d chamfer using two distances:

profile p x 2 y 2 x -2
chfi2d cfr p . . CDD 0.3 0.6
==Pick an object

#select an edge

==Pick an object

#select an edge

Let us create a 2d chamfer using a defined distance and angle

(c) Open CASCADE 2018

7.3 Primitives 125

top
profile p x 2 y 2 x -2
chfi2d cfr p . . CDA 0.3 75

==Pick an object
#select an edge
==Pick an obiject
#select an edge

7.2.12 nproject

Syntax:

nproject pj el e2 e3 ... surf -g -d [dmax] [Tol
[continuity [maxdeg [maxseg]]]

Creates a shape projection which is normal to the target surface.

Example:

create a curved surface
line 1 00 01 00

trim 1 1 0 2

convert 1 1

incdeg 1 3

cmovep 1 1 0 0.5 0
cmovep 1 3 0 0.5 0
copy 1 11

translate 11 2 -0.5 0

mkedge el 1

mkedge e2 11

wire w el e2

prism p w 0 0 3

donl p

#display in four views

mu4

fit

create the example shape

circle ¢ 1.8 -0.51 010100 0.4
mkedge e ¢

donly p e

create the normal projection of the shape(circle)
nproject r e p

7.3 Primitives
Primitive commands make it possible to create simple shapes. They include:

* box and wedge commands.
» pceylinder, pcone, psphere, ptorus commands.

+ halfspace command

7.3.1 box, wedge

Syntax:

box name [x y z] dx dy dz
wedge name dx dy dz ltx / xmin zmin xmax xmax

box creates a box parallel to the axes with dimensions dx,dy,dz. x,y,z is the corner of the box. It is the default origin.

wedge creates a box with five faces called a wedge. One face is in the OXZ plane, and has dimensions dx,dz while
the other face is in the plane y = dy. This face either has dimensions /tx, dz or is bounded by xmin,zmin,xmax,zmax.

The other faces are defined between these faces. The face in the y=yd plane may be degenerated into a line if /tx
= 0, or a point if xmin = xmax and ymin = ymax. In these cases, the line and the point both have 5 faces each. To
position the wedge use the ttranslate and trotate commands.

(c) Open CASCADE 2018

7.3 Primitives 126

Example:
a box at the origin
box bl 10 20 30

another box
box b2 30 30 40 10 20 30

a wedge
wedge wl 10 20 30 5

a wedge with a sharp edge (5 faces)
wedge w2 10 20 30 0

a pyramid
wedge w3 20 20 20 10 10 10 10

7.3.2 pcylinder, pcone, psphere, ptorus
Syntax:

pcylinder name [plane] radius height [angle]

pcone name [plane] radiusl radius2 height [angle]

pcone name [plane] radiusl radius2 height [angle]

psphere name [plane] radiusl [anglel angle2] [angle]

ptorus name [plane] radiusl radius2 [anglel angle2] [angle]

All these commands create solid blocks in the default coordinate system, using the Z axis as the axis of revolution
and the X axis as the origin of the angles. To use another system, translate and rotate the resulting solid or use a
plane as first argument to specify a coordinate system. All primitives have an optional last argument which is an
angle expressed in degrees and located on the Z axis, starting from the X axis. The default angle is 360.

peylinder creates a cylindrical block with the given radius and height.

pcone creates a truncated cone of the given height with radius1 in the plane z = 0 and radius2 in the plane z =
height. Neither radius can be negative, but one of them can be null.

psphere creates a solid sphere centered on the origin. If two angles, angle and angle2, are given, the solid will be
limited by two planes at latitude angle? and angle2. The angles must be increasing and in the range -90,90.

ptorus creates a solid torus with the given radii, centered on the origin, which is a point along the z axis. If two
angles increasing in degree in the range 0 — 360 are given, the solid will be bounded by two planar surfaces at those
positions on the circle.

Example:

a can shape
pcylinder cy 5 10

a quarter of a truncated cone
pcone co 15 10 10 90

three-quarters of sphere
psphere sp 10 270

half torus
ptorus to 20 5 0 90

7.3.3 halfspace
Syntax:

halfspace result face/shell x y z

halfspace creates an infinite solid volume based on a face in a defined direction. This volume can be used to
perform the boolean operation of cutting a solid by a face or plane.

Example:

(c) Open CASCADE 2018

7.4 Sweeping 127

box b 000123

explode b f

==p_1 b_2 b_3 b_4 b_5 b_6
halfspace hr b_3 0.5 0.5 0.5

7.4 Sweeping
Sweeping creates shapes by sweeping out a shape along a defined path:
+ prism — sweeps along a direction.
+ revol — sweeps around an axis.
+ pipe — sweeps along a wire.
+ mksweep and buildsweep — to create sweeps by defining the arguments and algorithms.

« thrusections — creates a sweep from wire in different planes.

7.41 prism
Syntax:

prism result base dx dy dz [Copy | Inf | SemiInf

Creates a new shape by sweeping a shape in a direction. Any shape can be swept: a vertex gives an edge; an
edge gives a face; and a face gives a solid.

The shape is swept along the vector dx dy dz. The original shape will be shared in the result unless Copy is
specified. If Infis specified the prism is infinite in both directions. If Semiinfis specified the prism is infinite in the
dx,dy,dz direction, and the length of the vector has no importance.

Example:

sweep a planar face to make a solid
polyline £ 0 0 0 10 0 0 10 50 550 5150 0 150 0 0 0
mkplane f £

7.4.2 revol
Syntax:

revol result base x y z dx dy dz angle [Copy]

Creates a new shape by sweeping a base shape through an angle along the axis x,y,z dx,dy,dz. As with the prism
command, the shape can be of any type and is not shared if Copy is specified.

Example:

shell by wire rotation
polyline w 0 0 0 10 0 0 10 5 0 55 0 5 15 0 0 15 0
revol s w20 0 0 010 90

7.4.3 pipe
Syntax:

pipe name wire_spine Profile

(c) Open CASCADE 2018

7.4 Sweeping

128

Creates a new shape by sweeping a shape known as the profile along a wire known as the spine.

Example:

sweep a circle along a bezier curve to make a solid
pipe

beziercurve spine 4 0 0 0 10 0 0 10 10 0 20 10 O
mkedge spine spine

wire spine spine

circle profile 0 0 0 1 0 0 2

mkedge profile profile

wire profile profile

mkplane profile profile

pipe p spine profile

7.44 mksweep, addsweep, setsweep, deletesweep, buildsweep, simulsweep

Syntax:

mksweep wire

addsweep wire[vertex] [-M] [-C] [auxiilaryshape]
deletesweep wire

setsweep options [argl [arg2 [...]]]
simulsweep r [n] [option]

buildsweep [r] [option] [Tol]

options are :

* -FR: Tangent and Normal are defined by a Frenet trihedron

» -CF : Tangent is given by Frenet, the Normal is computed to minimize the torsion

« -DX Surf: Tangent and Normal are given by Darboux trihedron, surf must be a shell or a face

* -CN dx dy dz : BiNormal is given by dx dy dz
* -FX Tx Ty TZ [Nx Ny Nz] : Tangent and Normal are fixed

+ -G guide

These commands are used to create a shape from wires. One wire is designated as the contour that defines the

direction; it is called the spine. At least one other wire is used to define the the sweep profile.

* mksweep — initializes the sweep creation and defines the wire to be used as the spine.

+ addsweep — defines the wire to be used as the profile.

+ deletesweep — cancels the choice of profile wire, without leaving the mksweep mode. You can re-select a

profile wire.

» setsweep — commands the algorithms used for the construction of the sweep.

» simulsweep — can be used to create a preview of the shape. [n] is the number of sections that are used to

simulate the sweep.

« buildsweep — creates the sweep using the arguments defined by all the commands.

Example:

#create a sweep based on a semi-circular wire using the
Frenet algorithm

#create a circular figure

circle c2 0 0 01 0 0 10

trim c2 c2 -pi/2 pi/2

mkedge e2 c2

donly e2

wire w e2

whatis w

(c) Open CASCADE 2018

7.5 Topological transformation 129

mksweep w

to display all the options for a sweep

setsweep

#to create a sweep using the Frenet algorithm where the
#normal is computed to minimise the torsion

setsweep -CF

addsweep w -R

to simulate the sweep with a visual approximation
simulsweep w 3

7.4.5 thrusections
Syntax:

thrusections [-N] result issolid isruled wirel wire2 [..wire..]

thrusections creates a shape using wires that are positioned in different planes. Each wire selected must have the
same number of edges and vertices. A bezier curve is generated between the vertices of each wire. The option [-N]
means that no check is made on wires for direction.

Example:

#create three wires in three planes
polyline w1l 0 0 0 500550230
polyline w2 0 1 3 413 443133
polyline w3 0 0 5505555235

create the shape

thrusections th issolid isruled wl w2 w3
==thrusections th issolid isruled wl w2 w3
Tolerances obtenues -—3d : 0

-—2d : 0

7.5 Topological transformation

Transformations are applications of matrices. When the transformation is nondeforming, such as translation or
rotation, the object is not copied. The topology localcoordinate system feature is used. The copy can be enforced
with the tcopy command.

» tcopy — makes a copy of the structure of a shape.

- ttranslate, trotate, tmove and reset — move a shape.

« tmirror and tscale — always modify the shape.

751 tcopy
Syntax:

tcopy name toname [name toname ...]

Copies the structure of one shape, including the geometry, into another, newer shape.

Example:

create an edge from a curve and copy it

beziercurve ¢ 3 0 0 0 10 0 0 20 10 O

mkedge el c

ttranslate el 0 5 0

tcopy el e2

ttranslate e2 0 5 0

now modify the curve, only el and e2 will be modified

(c) Open CASCADE 2018

7.5 Topological transformation

130

7.5.2 tmove, treset

Syntax:

tmove name [name ...] shape
reset name [name ...]

tmove and reset modify the location, or the local coordinate system of a shape.

tmove applies the location of a given shape to other shapes. reset restores one or several shapes it to its or their

original coordinate system(s).

Example:

create two boxes

box bl 10 10 10

box b2 20 0 0 10 10 10

translate the first box
ttranslate bl 0 10 0O

and apply the same location to b2
tmove b2 bl

return to original positions
reset bl b2

7.5.3 ttranslate, trotate

Syntax:
ttranslate [name ...] dx dy dz
trotate [name ...] x y z dx dy dz angle

ttranslate translates a set of shapes by a given vector, and trotate rotates them by a given angle around an axis.
Both commands only modify the location of the shape. When creating multiple shapes, the same location is used for
all the shapes. (See toto.tcl example below. Note that the code of this file can also be directly executed in interactive

mode.)

Locations are very economic in the data structure because multiple occurences of an object share the topological

description.

Example:

make rotated copies of a sphere in between two cylinders

create a file source toto.tcl

toto.tcl code:

for {set 1 0} {$i < 360} {incr i 20}
copy s s$i

trotate s$1 0 0 0 0 0 1 $i

}

create two cylinders
pcylinder cl 30 5

copy cl c2

ttranslate c2 0 0 20

#create a sphere
psphere s 3
ttranslate s 25 0 12.5

call the source file for multiple copies

source toto.tcl

7.5.4 tmirror, tscale

Syntax:

tmirror name x y z dx dy dz
tscale name x y z scale

 tmirror makes a mirror copy of a shape about a plane x,y,z dx,dy,dz.

(c) Open CASCADE 2018

7.6 Old Topological operations 131

+ Tscale applies a central homotopic mapping to a shape.

Example:

mirror a portion of cylinder about the YZ plane
pcylinder cl 10 10 270

copy cl c2

tmirror c2 15 0 0 1 0 0

and scale it

tscale ¢c1 0 0 0 0.5

7.6 Old Topological operations

« fuse, cut, common are boolean operations.
+ section, psection compute sections.

+ sewing joins two or more shapes.

7.6.1 fuse, cut, common

Syntax:

fuse name shapel shape2
cut name shapel shape2
common name shapel shape2

fuse creates a new shape by a boolean operation on two existing shapes. The new shape contains both originals
intact.

cut creates a new shape which contains all parts of the second shape but only the first shape without the intersection
of the two shapes.

common creates a new shape which contains only what is in common between the two original shapes in their
intersection.

Example:

all four boolean operations on a box and a cylinder

box b 0 -10 5 20 20 10
pcylinder ¢ 5 20

fuse sl b ¢
ttranslate sl 40 0 0

cut s2 b ¢
ttranslate s2 -40 0 O

cut s3 c b
ttranslate s3 0 40 0

common s4 b c
ttranslate s4 0 -40 O

7.6.2 section, psection

Syntax:

section result shapel shape2
psection name shape plane

section creates a compound object consisting of the edges for the intersection curves on the faces of two shapes.

psection creates a planar section consisting of the edges for the intersection curves on the faces of a shape and a
plane.

Example:

(c) Open CASCADE 2018

7.7 New Topological operations 132

section line between a cylinder and a box
pcylinder c 10 20

box b 0 0 5 15 15 15

trotate b 0 0 0 1 1 1 20

section s b ¢

planar section of a cone
pcone ¢ 10 30 30

plane p 0 0 15 1 1 2
psection s c p

7.6.3 sewing
Syntax:

sewing result [tolerance] shapel shape2 ...

Sewing joins shapes by connecting their adjacent or near adjacent edges. Adjacency can be redefined by modifying
the tolerance value.

Example:

create two adjacent boxes

box b 000123

box b2 02 01 2 3

sewing sr b b2

whatis sr

sr is a shape COMPOUND FORWARD Free Modified

7.7 New Topological operations

The new algorithm of Boolean operations avoids a large number of weak points and limitations presented in the old
boolean operation algorithm.

7.71 bparallelmode

 bparallelmode enable or disable parallel mode for boolean operations. Sequential computing is used by
default.

Syntax:

bparallelmode [1/0]
Without arguments, bparallelmode shows current state of parallel mode for boolean operations.

+ 0 Disable parallel mode,
+ 1 Enable parallel mode
Example:
Enable parallel mode for boolean operations.

bparallelmode 1

Show state of parallel mode for boolean operations.
bparallelmode

7.7.2 bop, bopfuse, bopcut, boptuc, bopcommon

» bop defines shape1 and shapeZ2 subject to ulterior Boolean operations

(c) Open CASCADE 2018

7.7 New Topological operations

133

» bopfuse creates a new shape by a boolean operation on two existing shapes. The new shape contains both

originals intact.

+ bopcut creates a new shape which contains all parts of the second shape but only the first shape without the

intersection of the two shapes.

» boptuc is a reverced bopcut.

* bopcommon creates a new shape which contains only whatever is in common between the two original

shapes in their intersection.

Syntax:

bop shapel shape2
bopcommon result
bopfuse result
bopcut result
boptuc result

These commands have short variants:

bcommon result shapel shape2
bfuse result shapel shape2
bcut result shapel shape2

bop fills data structure (DS) of boolean operation for shape1 and shape2. bopcommon, bopfuse, bopcut, boptuc
commands are used after bop command. After one bop command it is possible to call several commands from the

list above. For example:

bop S1 S2
bopfuse R

Example:

Let us produce all four boolean operations on a box and a cylinder:

box b 0 -10 5 20 20 10
pcylinder ¢ 5 20

fills data structure
bop b ¢

bopfuse sl
ttranslate sl 40 0 0

bopcut s2
ttranslate s2 -40 0 O

boptuc s3
ttranslate s3 0 40 0

bopcommon s4
ttranslate s4 0 -40 0O

Now use short variants of the commands:

bfuse sll b c
ttranslate s11 40 0 100

bcut sl12 b c
ttranslate s12 -40 0 100

bcommon sl14 b c
ttranslate s14 0 -40 100

7.7.3 bopsection

Syntax:

(c) Open CASCADE 2018

7.7 New Topological operations 134

bop shapel shape2
bopsection result

» bopsection — creates a compound object consisting of the edges for the intersection curves on the faces of
two shapes.
» bop — fills data structure (DS) of boolean operation for shape1 and shape2.

* bopsection — is used after bop command.

Short variant syntax:

bsection result shapel shape2 [-2d/-2d1/-2s2] [-a]

» -2d — PCurves are computed on both parts.
» -2d1 - PCurves are computed on first part.
» -2d2 - PCurves are computed on second part.

* -a— built geometries are approximated.

Example:

Let us build a section line between a cylinder and a box

pcylinder c 10 20

box b 0 0 5 15 15 15
trotate b 0 0 0 1 1 1 20
bop b ¢

bopsection s

Short variant:
bsection s2 b ¢

7.7.4 bopcheck, bopargshape
Syntax:

bopcheck shape
bopargcheck shapel [[shape2] [-F/0/C/T/S/U] [/RIF|TI|VIE|I|P]] [#BF]

bopcheck checks a shape for self-interference.

bopargcheck checks the validity of argument(s) for boolean operations.

» Boolean Operation — (by default a section is made) :

F (fuse)

(common)
(cut)
cut21)

S (section)
U (

o
-C
T(

unknown)

+ Test Options — (by default all options are enabled) :

R (disable small edges (shrink range) test)

disable faces verification test)

F(
T (disable tangent faces searching test)
V(

disable test possibility to merge vertices)

(c) Open CASCADE 2018

7.8 Drafting and blending 135

— E (disable test possibility to merge edges)
— | (disable self-interference test)
— P (disable shape type test)
+ Additional Test Options :
— B (stop test on first faulty found) — by default it is off;

— F (full output for faulty shapes) — by default the output is made in a short format.

Note that Boolean Operation and Test Options are used only for a couple of argument shapes, except for | and P
options that are always used to test a couple of shapes as well as a single shape.

Example:

checks a shape on self-interference
box b1 00 0111
bopcheck bl

checks the validity of argument for boolean cut operations
box b2 0 0 0 10 10 10
bopargcheck bl b2 -C

7.8 Drafting and blending

Drafting is creation of a new shape by tilting faces through an angle.

Blending is the creation of a new shape by rounding edges to create a fillet.

» Use the depouille command for drafting.

+ Use the chamf command to add a chamfer to an edge
» Use the blend command for simple blending.

+ Use bfuseblend for a fusion + blending operation.

+ Use beutblend for a cut + blending operation.

+ Use buildevol, mkevol, updatevol to realize varying radius blending.

7.8.1 depouille
Syntax:

dep result shape dirx diry dirz face angle x y x dx dy dz [face angle...]

Creates a new shape by drafting one or more faces of a shape.

Identify the shape(s) to be drafted, the drafting direction, and the face(s) with an angle and an axis of rotation for
each face. You can use dot syntax to identify the faces.

Example:

draft a face of a box
box b 10 10 10

explode b f

==Db_1 b 2 b 3 b_4b_5Db_6

dep ab 001b_2100100105

(c) Open CASCADE 2018

7.8 Drafting and blending

136

7.8.2 chamf

Syntax:

chamf newname shape edge face S dist
chamf newname shape edge face distl dist2
chamf newname shape edge face A dist angle

Creates a chamfer along the edge between faces using:

+ a equal distances from the edge
 the edge, a face and distance, a second distance

« the edge, a reference face and an angle

Use the dot syntax to select the faces and edges.

Examples:

Let us create a chamfer based on equal distances from the edge (45 degree angle):

create a box

box b1 2 3

chamf ch b . . S 0.5
==Pick an object

select an edge

==Pick an obiject

select an adjacent face

Let us create a chamfer based on different distances from the selected edge:

box b1 2 3

chamf ch b . . 0.3 0.4
==Pick an obiject

select an edge

==Pick an object

select an adjacent face

Let us create a chamfer based on a distance from the edge and an angle:

box b 1 2 3

chamf ch b . . A 0.4 30
==Pick an object

select an edge

==Pick an object

select an adjacent face

7.8.3 blend

Syntax:

blend result object radl edl rad2 ed2 ... [R/Q/P]

Creates a new shape by filleting the edges of an existing shape. The edge must be inside the shape. You may use

the dot syntax. Note that the blend is propagated to the edges of tangential planar, cylindrical or conical faces.

Example:

blend a box, click on an edge
box b 20 20 20

blend b b 2 .

==tolerance ang : 0.01

==tolerance 3d : 0.0001
==tolerance 2d : le-05

==fleche : 0.001

==tolblend 0.01 0.0001 le-05 0.001
==Pick an object

(c) Open CASCADE 2018

7.8 Drafting and blending 137

click on the edge you want ot fillet

COMPUTE: temps total 0.ls dont :
- Init + ExtentAnalyse Os
PerformSetOfSurf 0.02s
PerformFilletOnVertex 0.02s
FilDS Os

Reconstruction 0.06s

SetRegul Os

7.8.4 bfuseblend
Syntax:

bfuseblend name shapel shape2 radius [-d]

Creates a boolean fusion of two shapes and then blends (fillets) the intersection edges using the given radius.
Option [-d] enables the Debugging mode in which the error messages, if any, will be printed.

Example:

fuse-blend two boxes
box bl 20 20 5

copy bl b2

ttranslate b2 -10 10 3
bfuseblend a bl b2 1

7.8.5 bcutblend

Syntax:

bcutblend name shapel shape2 radius [-d]

Creates a boolean cut of two shapes and then blends (fillets) the intersection edges using the given radius. Option
[-d] enables the Debugging mode in which the error messages, if any, will be printed.

Example:

cut-blend two boxes
box bl 20 20 5

copy bl b2

ttranslate b2 -10 10 3
bcutblend a bl b2 1

7.8.6 mkevol, updatevol, buildevol
Syntax:

mkevol result object (then use updatevol) [R/Q/P]
updatevol edge ul radiusl [u2 radius2 ...]
buildevol

These three commands work together to create fillets with evolving radii.

» mkevol allows specifying the shape and the name of the result. It returns the tolerances of the fillet.

+ updatevol allows describing the filleted edges you want to create. For each edge, you give a set of
coordinates: parameter and radius and the command prompts you to pick the edge of the shape which
you want to modify. The parameters will be calculated along the edges and the radius function applied to the
whole edge.

« buildevol produces the result described previously in mkevol and updatevol.

(c) Open CASCADE 2018

7.9 Defeaturing

138

Example:

makes an evolved radius on a box
box b 10 10 10

mkevol b b

==tolerance ang : 0.01

==tolerance 3d : 0.0001
==tolerance 2d : le-05

==fleche : 0.001

==tolblend 0.01 0.0001 le-05 0.001

click an edge
updatevol . 01 1 3 2 2
==Pick an object

buildevol

==Dump of SweepApproximation
==Error 3d = 1.28548881203818e-14
==Error 2d = 1.3468326936926e-14 ,
==1.20292299999388e-14

==2 Segment (s) of degree 3

==COMPUTE: temps total 0.91s dont
==- Init + ExtentAnalyse O0Os

==- PerformSetOfSurf 0.33s

==- PerformFilletOnVertex 0.53s

- FilDs 0.01s

— Reconstruction 0.04s

=— SetRegul 0Os

7.9 Defeaturing

Draw command removefeatures is intended for performing 3D Model Defeaturing, i.e. it performs the removal of

the requested features from the shape.

Syntax:

removefeatures result shape fl f2

Where:

result - result of the operation;

shape - the shape to remove the features from;
f1, f2 - features to remove from the shape;
Options:

nohist — disables the history collection;

parallel - enables the parallel processing mode.

7.10 Analysis of topology and geometry

Analysis of shapes includes commands to compute length, area, volumes and inertial properties, as well as to

compute some aspects impacting shape validity.

» Use Iprops, sprops, vprops to compute integral properties.
» Use bounding to compute and to display the bounding box of a shape.
+ Use distmini to calculate the minimum distance between two shapes.

+ Use isbbinterf to check if the two shapes are interfered by their bounding boxes.

» Use xdistef, xdistcs, xdistcc, xdistc2dc2dss, xdistcc2ds to check the distance between two objects on

even grid.

+ Use checkshape to check validity of the shape.
» Use tolsphere to see the tolerance spheres of all vertices in the shape.

» Use validrange to check range of an edge not covered by vertices.

(c) Open CASCADE 2018

7.10 Analysis of topology and geometry 139

7.10.1 Iprops, sprops, vprops
Syntax:

lprops shape
sprops shape
vprops shape

« Iprops computes the mass properties of all edges in the shape with a linear density of 1;
» sprops of all faces with a surface density of 1;

+ vprops of all solids with a density of 1.

All three commands print the mass, the coordinates of the center of gravity, the matrix of inertia and the moments.
Mass is either the length, the area or the volume. The center and the main axis of inertia are displayed.

Example:

volume of a cylinder
pcylinder c¢ 10 20
vprops c

== results

Mass : 6283.18529981086

Center of gravity :

X = 4.1004749224903e-06

Y -2.03392858349861e-16
A 9.9999999941362

Matrix of Inertia :

366519.141445068 5.71451850691484e-12
0.257640437382627

5.71451850691484e-12 366519.141444962
2.26823064169991e-10 0.257640437382627
2.26823064169991e-10 314159.265358863
Moments :

IX = 366519.141446336
IY = 366519.141444962
I.Z2 = 314159.265357595

7.10.2 bounding

Syntax:

bounding {-s shape | -c xmin ymin zmin xmax ymax zmax} [-obb] [-shape name] [-dump] [-notriangulation]
[-perfmeter name NbIters] [-save xmin ymin zmin xmax ymax zmax] [-nodraw] [-optimal] [-exttoler]

Computes and displays the bounding box (BndBox) of a shape. The bounding box is a cuboid that circumscribes
the source shape. Generaly, bounding boxes can be divided into two main types:

« axis-aligned BndBox (AABB). l.e. the box whose edges are parallel to an axis of World Coordinate System
(WCS);
- oriented BndBox (OBB). l.e. not AABB.
Detailed information about this command is availabe in DRAW help-system (enter "help bounding" in DRAW appli-
cation).

Example 1: Creation of AABB with given corners

bounding -c 50 100 30 180 200 100 -shape result
look at the box

vdisplay result

viit

vsetdispmode 1

Example 2: Compare AABB and OBB

(c) Open CASCADE 2018

7.10 Analysis of topology and geometry

140

Create a torus and rotate it
ptorus t 20 5
trotate t 5 10 15 1 1 1 28

Create AABB from the torus

bounding -s t -shape ra -dump -save x1 yl zl x2 y2 z2
==Axes—-aligned bounding box

==X-range: -26.888704600189307 23.007685197265488
==Y-range: -22.237699567214314 27.658690230240481
==Z-range: -13.813966507560762 12.273995247458407

Obtain the boundaries
dump x1 yl zl x2 y2 z2
==xkkkkxkrkxx DUMP OF XL Hxkkkxhkhsrhx

==-26.8887046001893

==k kxkkkxkkxx Dump of yl KAk KKK KKK KK KKK

==-22.2376995672143

==kkxxkkxkkkx DUMP OF Z1 *rkxkhkxhkhkxx
==-13.8139665075608

==xkkkkkkrkxk DUMP OFf X2 Hxkkkxkkhsrhx

==23.0076851972655

==kkkxkkxkrkkx DUMP OF Y2 *xkxkrkxrkhkxr

==27.6586902302405

=S=kkxkxkkxkkkx DUMP OF Z2 *xkxkskhkxhkhxx

==12.2739952474584

Compute the volume of AABB
vprops ra 1.0e-12
==Mass : 64949.9

Let us check this value
dval (x2-x1)x(y2-yl)=*(z2-z1)
==64949.886543606823

The same result is obtained.

Create OBB from the torus

bounding -s t -shape ro -dump -obb

==Oriented bounding box

==Center: -1.9405097014619073 2.7104953315130857 -0.76998563005117782
==X-axis: 0.31006700219833244 -0.23203206410428409 0.9219650619059514
==Y-axis: 0.098302309139513336 -0.95673739537318336 -0.27384340837854165
==Z-axis: 0.94561890324040099 0.17554109923901748 -0.27384340837854493
==Half X: 5.0000002000000077

==Half Y: 26.783728747002169

==Half Z: 26.783728747002165

Compute the volume of OBB
vprops ro 1.0e-12
==Mass : 28694.7

As we can see, the volume of OBB is significantly less than the volume of AABB.

7.10.3 isbbinterf

Syntax:

isbbinterf shapel shape2 [-0]

Checks whether the bounding boxes created from the given shapes are interfered. If "-0"-option is switched on then

the oriented boxes will be checked. Otherwise, axis-aligned boxes will be checked.

Example 1: Not interfered AABB

box bl 100 60 140 20 10 80

box b2 210 200 80 120 60 90

isbbinterf bl b2

==The shapes are NOT interfered by AABB.

Example 2: Interfered AABB

(c) Open CASCADE 2018

7.10 Analysis of topology and geometry 141

box bl 300 300 300

box b2 100 100 100 50 50 50
isbbinterf bl b2

==The shapes are interfered by AABB.

Example 3: Not interfered OBB

box bl 100 150 200

copy bl b2

trotate bl -150 -150 -150 1 2 3 -40
trotate b2 -150 -150 -150 1 5 2 60

Check of interference
isbbinterf bl b2 -o
==The shapes are NOT interfered by OBB.

Example 4: Interfered OBB

box bl 100 150 200

copy bl b2

trotate bl -50 -50 -50 1 1 1 -40
trotate b2 -50 -50 -50 1 1 1 60

Check of interference
isbbinterf bl b2 -o
==The shapes are interfered by OBB.

7.10.4 distmini

Syntax:

distmini name Shapel Shape2

Calculates the minimum distance between two shapes. The calculation returns the number of solutions, if more
than one solution exists. The options are displayed in the viewer in red and the results are listed in the shell window.
The distminilines are considered as shapes which have a value v.

Example:

box b 0 0 0 10 20 30

box b2 30 30 0 10 20 30

distmini dl b b2

==the distance value is : 22.3606797749979
==the number of solutions is :2

==solution number 1

==the type of the solution on the first shape is 0
==the type of the solution on the second shape is 0
==the coordinates of the point on the first shape are:
==X=10 Y=20 z=30

==the coordinates of the point on the second shape
are:

==X=30 Y=30 z=30

==solution number 2:

==the type of the solution on the first shape is 0
==the type of the solution on the second shape is 0
==the coordinates of the point on the first shape are:
==X=10 Y=20 z=0

==the coordinates of the point on the second shape
are:

==X=30 Y=30 z=0

==dl_val dl di2

7.10.5 xdistef, xdistcs, xdistcc, xdistc2dc2dss, xdistcc2ds

Syntax:

xdistef edge face

xdistcs curve surface firstParam lastParam [NumberOfSamplePoints]

xdistcc curvel curve2 startParam finishParam [NumberOfSamplePoints]

xdistcc2ds ¢ curve2d surf startParam finishParam [NumberOfSamplePoints]

xdistc2dc2dss curve2d_1 curve2d_2 surface_1 surface_2 startParam finishParam [NumberOfSamplePoints]

(c) Open CASCADE 2018

7.10 Analysis of topology and geometry

142

It is assumed that curves have the same parametrization range and startParam is less than finishParam.

Commands with prefix xdlist allow checking the distance between two objects on even grid:

» xdistef — distance between edge and face;

+ xdistcs — distance between curve and surface. This means that the projection of each sample point to the

surface is computed;
» xdistcc — distance between two 3D curves;
» xdistcc2ds — distance between 3d curve and 2d curve on surface;

» xdistc2dc2dss — distance between two 2d curves on surface.

Examples

bopcurves bl b2 -2d

mksurf sl bl

mksurf s2 b2

xdistcs c_1 sl1 0 1 100

xdistcc2ds c_1 c2d2_1 s2 0 1

xdistc2dc2dss c2dl_1 c2d2_1 sl s2 0 1 1000

7.10.6 checkshape

Syntax:

checkshape [-top] shape [result] [-short]

Where:

+ top — optional parameter, which allows checking only topological validity of a shape.
» shape — the only required parameter, defines the name of the shape to check.
* result— optional parameter, defines custom prefix for the output shape names.

* short— a short description of the check.

checkshape examines the selected object for topological and geometric coherence. The object should be a three

dimensional shape.

Example:

checkshape returns a comment valid or invalid
box b1 00 01 11

checkshape bl

returns the comment

this shape seems to be valid

7.10.7 tolsphere

Syntax:

tolsphere shape
Where:

+ shape — the name of the shape to process.

tolsphere shows vertex tolerances by drawing spheres around each vertex in the shape. Each sphere is assigned

a name of the shape with suffix "_vXXX", where XXX is the number of the vertex in the shape.

Example:

(c) Open CASCADE 2018

7.11 Surface creation 143

tolsphere returns all names of created spheres.
box b1 00 01 11

settolerance bl 0.05

tolsphere bl

creates spheres and returns the names

bl vl bl_v2 bl_v3 bl_v4 bl_v5 bl_v6 bl_v7 bl_v8

7.10.8 validrange

Syntax:

validrange edge [(out) ul u2]

Where:

» edge — the name of the edge to analyze.

« uf1, u2 - optional names of variables to put into the range.

validrange computes valid range of the edge. If u7 and u2 are not given, it returns the first and the last parameters.
Otherwise, it sets variables u? and u2.

Example:

circle ¢ 0 0 0 10
mkedge e ¢

mkedge e ¢ 0 pi
validrange e

returns the range
1.9884375000000002e-008 3.1415926337054181
validrange e ul u2

dval ul
1.9884375000000002e-008
dval u2
3.1415926337054181

7.11 Surface creation
Surface creation commands include surfaces created from boundaries and from spaces between shapes.

+ gplate creates a surface from a boundary definition.

« filling creates a surface from a group of surfaces.

7.11.1 gplate,

Syntax:

gplate result nbrcurfront nbrpntconst [SurfInit] [edge 0] [edge tang (1:G1;2:G2) surf]...[point] [u v tang
(1:G1;2:G2) surf]

Creates a surface from a defined boundary. The boundary can be defined using edges, points, or other surfaces.

Example:

plane p
trimp p -1 3 -1 3
mkface p p

beziercurve ¢c1 3 00 01 01200
mkedge el cl
tcopy el e2
tcopy el e3

ttranslate €2 0 2 0
trotate e3 0 0 0 0 0 1 90

(c) Open CASCADE 2018

7.11 Surface creation 144

tcopy e3 e4

ttranslate e4 2 0 0O

create the surface

gplate rl 4 0 pel 0 e2 0 e3 0ed O

======== Results ===========
DistMax=8.50014503228635e-16

* GEOMPLATE END=*

Calculation time: 0.33

Loop number: 1

Approximation results

Approximation error : 2.06274907619957e-13
Criterium error : 4.97600631215754e-14

#to create a surface defined by edges and passing through a point
to define the border edges and the point

plane p

trimp p -1 3 -1 3

mkface p p

beziercurve ¢c1 3 00 01 01200
mkedge el cl

tcopy el e2

tcopy el e3

ttranslate e2 0 2 0

trotate €3 0 0 0 0 0 1 90

tcopy e3 e4

ttranslate e4 2 0 O

to create a point

point pp 1 1 0

to create the surface

gplate r2 4 1 p el 0 e2 0 e3 0 e4 0 pp
======== Results ===========
DistMax=3.65622157610934e-06

* GEOMPLATE END=*

Calculculation time: 0.27

Loop number: 1

Approximation results

Approximation error : 0.000422195884750181
Criterium error : 3.43709808053967e-05

7.11.2 filling, fillingparam
Syntax:

filling result nbB nbC nbP [SurfInit] [edge] [face]order...
edge[facelorder... point/u v face order...

Creates a surface between borders. This command uses the gplate algorithm but creates a surface that is tangential
to the adjacent surfaces. The result is a smooth continuous surface based on the G1 criterion.

To define the surface border:

« enter the number of edges, constraints, and points

» enumerate the edges, constraints and points

The surface can pass through other points. These are defined after the border definition.
You can use the fillingparam command to access the filling parameters.

The options are:

» -/: to list current values

* -i: to set default values

 -rdeg nbPonC nblt anis : to set filling options
» -c t2d t3d tang tcur : to set tolerances

* -a maxdeg maxseg : Approximation option

(c) Open CASCADE 2018

7.12 Complex Topology

145

Example:

to create four curved survaces and a point
plane p

trimp p -1 3 -1 3

mkface p p

beziercurve ¢c1 3 0 0 01 01200
mkedge el cl
tcopy el e2
tcopy el e3

ttranslate €2 0 2 0
trotate €3 0 0 0 0 0 1 90
tcopy e3 e4

ttranslate e4 2 0 0O

point pp 1 1 0
prism f1 el 0 -1 O
prism £f2 e2 0 1 0
prism £3 e3 -1 0 0
prism f4 e4 1 0 0O

to create a tangential surface

filling rl 4 0 0 p el f1 1 e2 £f2 1 e3 £3 1 ed £f4 1
to create a tangential surface passing through point pp
filling r2 4 0 1 p el f1 1 e2 £f2 1 e3 £3 1 e4 f4 1 pp#

to visualise the surface in detail
isos r2 40

to display the current filling parameters
fillingparam -1

Degree = 3

NbPtsOnCur = 10

NbIter = 3

Anisotropie = 0

Tol2d = le-05

Tol3d = 0.0001

TolAng = 0.01

TolCurv = 0.1

MaxDeg = 8
MaxSegments = 9

7.12 Complex Topology

Complex topology is the group of commands that modify the topology of shapes. This includes feature modeling.

7.12.1 offsetshape, offsetcompshape

Syntax:

offsetshape r shape offset [tol] [face ...]
offsetcompshape r shape offset [face ...]

offsetshape and offsetcompshape assign a thickness to the edges of a shape. The offset value can be negative
or positive. This value defines the thickness and direction of the resulting shape. Each face can be removed to

create a hollow object.

The resulting shape is based on a calculation of intersections. In case of simple shapes such as a box, only the

adjacent intersections are required and you can use the offsetshape command.

In case of complex shapes, where intersections can occur from non-adjacent edges and faces, use the offset-

compshape command. comp indicates complete and requires more time to calculate the result.

The opening between the object interior and exterior is defined by the argument face or faces.

Example:

box bl 10 20 30

explode bl f

== Dbl 1 bl 2 bl _3 bl 4 bl_5 bl_6
offsetcompshape r bl -1 bl_3

(c) Open CASCADE 2018

7.12 Complex Topology 146

7.12.2 featprism, featdprism, featrevol, featlf, featrf

Syntax:

featprism shape element skface Dirx Diry Dirz Fuse(0/1/2) Modify(0/1)
featdprism shape face skface angle Fuse(0/1/2) Modify (0/1)

featrevol shape element skface Ox Oy Oz Dx Dy Dz Fuse(0/1/2) Modify(0/1)
featlf shape wire plane DirX DirY DirZ DirX DirY DirZ Fuse(0/1/2) Modify(0/1)
featrf shape wire plane X Y Z DirX DirY DirZ Size Size Fuse(0/1/2) Modify(0/1)
featperform prism/revol/pipe/dprism/1f result [[Ffrom] Funtil]

featperformval prism/revol/dprism/1lf result value

featprism loads the arguments for a prism with contiguous sides normal to the face.

featdprism loads the arguments for a prism which is created in a direction normal to the face and includes a draft
angle.

featrevol loads the arguments for a prism with a circular evolution.
featlf loads the arguments for a linear rib or slot. This feature uses planar faces and a wire as a guideline.

featrf loads the arguments for a rib or slot with a curved surface. This feature uses a circular face and a wire as a
guideline.

featperform loads the arguments to create the feature.
featperformval uses the defined arguments to create a feature with a limiting value.

All the features are created from a set of arguments which are defined when you initialize the feature context.
Negative values can be used to create depressions.

Examples:

Let us create a feature prism with a draft angle and a normal direction :

create a box with a wire contour on the upper face
box b 111
profil £ 0 0 0 1 F 0.25 0.25 x 0.5y 0.5 x -0.5
explode b f

loads the feature arguments defining the draft angle
featdprism b £ b_6 51 0

create the feature

featperformval dprism r 1
==BRepFeat_MakeDPrism: :Perform (Height)
BRepFeat_Form: :GlobalPerform ()

Gluer

still Gluer

Gluer result

Let us create a feature prism with circular direction :

create a box with a wire contour on the upper face
box b 1 11
profil £ 0 0 0 1 F 0.25 0.25 x 0.5y 0.5 x -0.5
explode b f

loads the feature arguments defining a rotation axis
featrevol b £f b6 1 01 01010

featperformval revol r 45
==BRepFeat_MakeRevol::Perform(Angle)
BRepFeat_Form: :GlobalPerform ()

Gluer

still Gluer

Gluer result

Let us create a slot using the linear feature :

#create the base model using the multi viewer

mué

profile p x 5y 1 x -3y -0.5x -1.5y 0.5 x 0.5y 4 x -1y -5
prism pr p 0 0 1

create the contour for the linear feature

vertex vl -0.2 4 0.3

vertex v2 0.2 4 0.
vertex v3 0.2 0.2
vertex v4 4 0.2 0.

3

w o w

(c) Open CASCADE 2018

7.12 Complex Topology

147

vertex v5 4 -0.2 0.3

edge el vl v2

edge e2 v2 v3

edge e3 v3 v4

edge e4 v4 v5

wire w el e2 e3 e4

define a plane

plane pl 0.2 0.2 0.3 0 0 1

loads the linear feature arguments
featlf pr w pl 0 0 0.3 0 0 0 0 1
featperform 1f result

Let us create a rib using the revolution feature :

#create the base model using the multi viewer
mué

pcylinder cl 3 5

create the contour for the revolution feature
profile w ¢ 1 190 WW

trotate w 0 0 0 1 0 0 90

ttranslate w -3 0 1

trotate w -3 0 1.5 0 0 1 180

plane pl -3 0 1.5 0 1 0

loads the revolution feature arguments
featrf cl wpl 00000 10.30.311
featperform rf result

7.12.3 draft

Syntax:

draft result shape dirx diry dirz angle shape/surf/length

Computes a draft angle surface from a wire. The surface is determined by the draft direction, the inclination of the

draft surface, a draft angle, and a limiting distance.

» The draft angle is measured in radians.

» The draft direction is determined by the argument -INTERNAL
» The argument Ri/Ro deftermines wether the corner edges of the draft surfaces are angular or rounded.

+ Arguments that can be used to define the surface distance are:

— length, a defined distance

— shape, until the surface contacts a shape

— surface, until the surface contacts a surface.

Note that the original aim of adding a draft angle to a shape is to produce a shape which can be removed easily
from a mould. The Examples below use larger angles than are used normally and the calculation results returned

are not indicated.

Example:

to create a simple profile

profile p F 00 x 2y 4 tt 04w

creates a draft with rounded angles

draft res p 0 0 1 3 1 -Ro

to create a profile with an internal angle
profile p F O 0 x 2y 4 tt 1 1.5ttt 04w

creates a draft with rounded external angles
draft res p 0 0 1 3 1 -Ro

7.12.4 deform

Syntax:

(c) Open CASCADE 2018

7.13 History commands 148

deform newname name CoeffX CoeffY CoeffZ

Modifies the shape using the X, y, and z coefficients. You can reduce or magnify the shape in the x,y, and z
directions.

Example:

pcylinder c 20 20

deform a ¢ 1 3 5

the conversion to bspline is followed by the
deformation

7.12.5 nurbsconvert
Syntax:

nurbsconvert result name [result name]

Changes the NURBS curve definition of a shape to a Bspline curve definition. This conversion is required for
assymetric deformation and prepares the arguments for other commands such as deform. The conversion can be
necessary when transferring shape data to other applications.

7.12.6 edgestofaces

edgestofaces - The command allows building planar faces from the planar edges randomly located in 3D space.

It has the following syntax:

edgestofaces r_faces edges [-a AngTol -s Shared(0/1)]
Options:

» -a AngTol - angular tolerance used for distinguishing the planar faces;

+ -s Shared(0/1) - boolean flag which defines whether the input edges are already shared or have to be inter-
sected.

7.13 History commands

Draw module for History Information support includes the command to save history of modifications performed by
Boolean operation or sibling commands into a drawable object and the actual history commands:

» savehistory;
* jsdeleted;
* modified,

* generated.

7.13.1 savehistory

savehistory command saves the history from the session into a drawable object with the given name.

Syntax:

savehistory : savehistory name

(c) Open CASCADE 2018

7.13 History commands 149

If the history of shape modifications performed during an operation is needed, the savehistory command should be
called after the command performing the operation. If another operation supporting history will be performed before
the history of the first operation is saved it will be overwritten with the new history.

Example:

box bl 10 10 10

box b2 5 0 0 10 10 15
bfuse r bl b2
savehistory fuse_hist

dump fuse_hist

Bk koK koK ko ok ok kK Dump of fuse_hist xxxkkkkkkkk**
History contains:

- 4 Deleted shapes;

- 20 Modified shapes;

- 6 Generated shapes.

unifysamedom ru r

savehistory usd_hist

dump usd_hist

3 kK ko ko ok ok kK Dump of UsSd_hist xxxxkxkkkkkk*
#History contains:

- 14 Deleted shapes;

- 28 Modified shapes;

- 0 Generated shapes.

7.13.2 isdeleted

isdeleted command checks if the given shape has been deleted in the given history.

Syntax:

isdeleted : isdeleted history shape

Example:

box bl 4 4 4 2 2 2
box b2 10 10 10
bcommon r bl b2

savehistory com_hist
all vertices, edges and faces of the b2 are deleted

foreach s [join [list [explode b2 v] [explode b2 e] [explode b2 £f]]] {
isdeleted com_hist $s
Deleted

}

7.13.3 modified

modified command returns the shapes Modified from the given shape in the given history. All modified shapes are
put into a compound. If the shape has not been modified, the resulting compound will be empty. Note that if the
shape has been modified into a single shape only, it will be returned without enclosure into the compound.

Syntax:

modified : modified modified_shapes history shape

Example:

box b 10 10 10

explode b e

fillet r b 2 b_1
savehistory fillet_hist

explode b f

modified m3 fillet_hist b_3
modified m5 fillet_hist b_5

(c) Open CASCADE 2018

7.14 Texture Mapping to a Shape 150

7.13.4 generated

generated command returns the shapes Generated from the given shape in the given history. All generated shapes
are put into a compound. If no shapes have been generated from the shape, the resulting compound will be empty.
Note that; if the shape has generated a single shape only, it will be returned without enclosure into the compound.

Syntax:

generated : generated generated_shapes history shape

Example:

polyline wl 0 0 0 10 0 0 10 10 O
polyline w2 5 1 10 9 1 10 9 5 10

thrusections r 0 0 wl w2
savehistory loft_hist

explode wl e
explode w2 e

generated gll loft_hist wl_1
generated gl2 loft_hist wl_2
generated g21 loft_hist w2_1
generated g22 loft_hist w2_2

compare gll g2l
equal shapes

compare gl2 g22
equal shapes

7.13.5 Enabling Draw history support for the algorithms

Draw History mechanism allows fast and easy enabling of the Draw history support for the OCCT algorithms sup-
porting standard history methods. To enable History commands for the algorithm it is necessary to save the history
of the algorithm into the session. For that, it is necessary to put the following code into the command implementation
just after the command is done:

BRepTest_Objects::SetHistory (ListOfArguments, Algorithm);

Here is the example of how it is done in the command performing Split operation (see implementation of the bapisplit
command):

BRepAlgoAPI_Splitter aSplitter;

// setting arguments

aSplitter.SetArguments (BOPTest_Objects::Shapes());
// setting tools

aSplitter.SetTools (BOPTest_Objects::Tools());

// setting options

aSplitter.SetRunParallel (BOPTest_Objects::RunParallel());
aSplitter.SetFuzzyValue (BOPTest_Objects::FuzzyValue());
aSplitter.SetNonDestructive (BOPTest_Objects: :NonDestructive());
aSplitter.SetGlue (BOPTest_Objects::Glue());
aSplitter.SetCheckInverted (BOPTest_Objects::CheckInverted());
aSplitter.SetUseOBB (BOPTest_Objects::UseOBB()) ;

// performing operation
aSplitter.Build();

// Store the history for the Objects (overwrites the history in the session)
BRepTest_Objects::SetHistory (BOPTest_Objects::Shapes (), aSplitter);

// Add the history for the Tools

BRepTest_Objects::AddHistory (BOPTest_Objects::Tools (), aSplitter);

7.14 Texture Mapping to a Shape

Texture mapping allows you to map textures on a shape. Textures are texture image files and several are predefined.
You can control the number of occurrences of the texture on a face, the position of a texture and the scale factor of
the texture.

(c) Open CASCADE 2018

7.14 Texture Mapping to a Shape 151

7.14.1 vtexture

Syntax:

vtexture NameOfShape TextureFile
vtexture NameOfShape

vtexture NameOfShape ?

vtexture NameOfShape IdOfTexture

TextureFile identifies the file containing the texture you want. The same syntax without TextureFile disables texture
mapping. The question-mark ? lists available textures. IdOfTexture allows applying predefined textures.

7.14.2 vtexscale

Syntax:

vtexscale NameOfShape ScaleU ScaleV
vtexscale NameOfShape ScaleUV
vtexscale NameOfShape

ScaleU and Scale V allow scaling the texture according to the U and V parameters individually, while ScaleUV
applies the same scale to both parameters.

The syntax without ScaleU, ScaleV or ScaleUV disables texture scaling.

7.143 vtexorigin

Syntax:

vtexorigin NameOfShape UOrigin VOrigin
vtexorigin NameOfShape UVOrigin
vtexorigin NameOfShape

UOQrigin and VOrigin allow placing the texture according to the U and V parameters individually, while UVOrigin
applies the same position value to both parameters.

The syntax without UOrigin, VOrigin or UVOrigin disables origin positioning.

7.14.4 vtexrepeat

Syntax:

vtexrepeat NameOfShape URepeat VRepeat
vtexrepeat NameOfShape UVRepeat
vtexrepeat NameOfShape

URepeat and VRepeat allow repeating the texture along the U and V parameters individually, while UVRepeat
applies the same number of repetitions for both parameters.

The same syntax without URepeat, VRepeat or UVRepeat disables texture repetition.
7.14.5 vtexdefault
Syntax:

vtexdefault NameOfShape

Viexdefault sets or resets the texture mapping default parameters.

The defaults are:

(c) Open CASCADE 2018

7.14 Texture Mapping to a Shape 152

» URepeat = VRepeat = 1 no repetition
» UOirigin = VOrigin = 1 origin set at (0,0)

» UScale = VScale = 1 texture covers 100% of the face

(c) Open CASCADE 2018

8 General Fuse Algorithm commands 153

8 General Fuse Algorithm commands

This chapter describes existing commands of Open CASCADE Draw Test Harness that are used for debugging
of General Fuse Algorithm (GFA). It is also applicable for all General Fuse based algorithms such as Boolean
Operations Algorithm (BOA), Splitter Algorithm (SPA), Cells Builder Algorithm etc.

See Boolean operations user's guide for the description of these algorithms.

8.1 Definitions

The following terms and definitions are used in this document:

Objects — list of shapes that are arguments of the algorithm.

Tools - list of shapes that are arguments of the algorithm. Difference between Objects and Tools is defined
by specific requirements of the operations (Boolean Operations, Splitting Operation).

DS - internal data structure used by the algorithm (BOPDS_DS object).

PavefFiller — intersection part of the algorithm (BOPAIgo_PaveFiller object).

Builder — builder part of the algorithm (BOPAIlgo_Builder object).

IDS Index — the index of the vector myLines.

8.2 General commands

bclearobjects — clears the list of Objects;

bcleartools — clears the list of Tools;

baddobjects S7 S2...Sn— adds shapes S1, S2, ... Sn as Objects;

baddtools S7 S2...Sn — adds shapes S71, S2, ... Sn as Tools;

bfillds — performs the Intersection Part of the Algorithm;

bbuild r— performs the Building Part of the Algorithm (General Fuse operation); ris the resulting shape;

bsplit r— performs the Splitting operation; ris the resulting shape;

bbop r iOp — performs the Boolean operation; ris the resulting shape; iOp - type of the operation (0 - COM«
MON; 1 - FUSE; 2 - CUT; 3 - CUT21; 4 - SECTION);

bebuild rx — performs initialization of the Cells Builder algorithm (see Usage of the Cells Builder algorithm for
more details).

8.3 Commands for Intersection Part

All commands listed below are available when the Intersection Part of the algorithm is done (i.e. after the command
bfillds).

8.3.1 bopds
Syntax:

bopds -v [e, f]

Displays:

(c) Open CASCADE 2018

8.3 Commands for Intersection Part

154

« all BRep shapes of arguments that are in the DS [default];
« -v: only vertices of arguments that are in the DS;
» -e: only edges of arguments that are in the DS;

+ -f: only faces of arguments that are in the DS.

8.3.2 bopdsdump

Prints contents of the DS.

Example:

Draw([28]> bopdsdump

*%*x DS *x%*

Ranges:2 number of ranges

range: 0 33 indices for range 1
range: 34 67 indices for range 2
Shapes:68 total number of source shapes

0 : SOLID { 1 }
: SHELL { 2 12 22 26 30 32 }
: FACE { 4 56 7 8 9 10 11 }
: WIRE { 4 7 9 11 }

: EDGE { 5 6 }

: VERTEX { }

: VERTEX { }

: EDGE { 8 5

: VERTEX { }

@ J oUW N

0 : SOLID { 1 }

has the following meaning:

* 0—index in the DS;
* SOLID - type of the shape;

» {1}—aDS index of the successors.

8.3.3 bopindex

Syntax:

bopindex S

Prints DS index of shape S.

8.3.4 Dbopiterator
Syntax:

bopiterator [tl t2]

Prints pairs of DS indices of source shapes that are intersected in terms of bounding boxes.

[t1 t2] are types of the shapes:

e 7—vertex;
* 6—edge;

* 4—face.

(c) Open CASCADE 2018

8.3 Commands for Intersection Part

155

Example:

Draw[104]> bopiterator 6 4

[
EF: (z58 z12)
EF: (zl1l7 z56
EF: (z19 z64)
EF: (z45 z26)
EF: (z29 z36)
EF: (z38 232)

* bopiterator 6 4 prints pairs of indices for types: edge/face;

» z58 z12 - DS indices of intersecting edge and face.

8.3.5 bopinterf
Syntax:

bopinterf t

Prints contents of mylnterfTB for the type of interference t:

+ t=0: vertex/vertex;
« t=1: vertex/edge;
» t=2: edge/edge;

« t=3: vertex/face;

» t=4: edge/face.
Example:

Draw[108]> bopinterf 4
EF: (58, 12, 68), (17, 56, 69), (19, 64, 70), (45, 26, 71), (29, 36, 72), (38, 32, 73), 6 EF found.

Here, record (58, 12, 68) means:

» 58— a DS index of the edge;
+ 12— a DS index of the face;

« 68— a DS index of the new vertex.

8.3.6 bopsp

Displays split edges.

Example:

Draw([33]> bopsp

edge 58 : z58_74 z58_75
edge 17 : z17_76 z17_77
edge 19 : 2z19_78 z19_79
edge 45 : z45_80 z45_81
edge 29 : 2z29_82 z29_83
edge 38 : z38_84 z38_85

* edge 58— 58 is a DS index of the original edge.

» z58 74 z58_75 — split edges, where 74, 75 are DS indices of the split edges.

(c) Open CASCADE 2018

8.3 Commands for Intersection Part

156

8.3.7 bopcb
Syntax:

bopcb [nE]

Prints Common Blocks for:

+ all source edges (by default);

« the source edge with the specified index nE.

Example:

Draw([43]> bopcb 17

-— CB:

PB:{ E:71 orE:17 Pavel: { 68 3.000 } Pave2: { 18 10.000 } }
Faces: 36

This command dumps common blocks for the source edge with index 17.

* PB - information about the Pave Block;

— 71— aDS index of the split edge
— 17— a DS index of the original edge

» Pavet : { 68 3.000 } — information about the Pave:

— 68— a DS index of the vertex of the pave

— 3.000 - a parameter of vertex 68 on edge 17

» Faces: 36 — 36 is a DS index of the face the common block belongs to.

8.3.8 bopfin
Syntax:

bopfin nF

Prints Face Info about IN-parts for the face with DS index nF.

Example:

Draw([47]> bopfin 36
pave blocks In:

PB:{ E:71 orE:17 Pavel: { 68 3.000 } Pave2: { 18 10.000 } }
PB:{ E:75 orE:19 Pavel: { 69 3.000 } Pave2: { 18 10.000 } }
vrts In:

18

* PB:{ E:71 0rE:17 Pavel: { 68 3.000 } Pave2: { 18 10.000 } } — information about the Pave Block;

e vrtsIn... 18 —a DS index of the vertex IN the face.

8.3.9 bopfon
Syntax:

bopfon nF

(c) Open CASCADE 2018

8.4 Commands for the Building Part 157

Print Face Info about ON-parts for the face with DS index nF.

Example:

Draw[58]> bopfon 36
pave blocks On:

PB:{ E:72 orE:38 Pavel: { 69 0.000 } Pave2: { 68 10.000 } }
PB:{ E:76 orE:45 Pavel: { 69 0.000 } Pave2: { 71 10.000 } }
PB:{ E:78 orE:43 Pavel: { 71 0.000 } Pave2: { 70 10.000 } }
PB:{ E:74 orE:41 Pavel: { 68 0.000 } Pave2: { 70 10.000 } }
vrts On:

68 69 70 71

* PB:A{ E:72 0rE:38 Pavel: { 69 0.000 } Pave2: { 68 10.000 } } — information about the Pave Block;

* vrts On: ... 68 69 70 71— DS indices of the vertices ON the face.

8.3.10 bopwho

Syntax:

bopwho nS

Prints the information about the shape with DS index nF.

Example:

Draw([116]> bopwho 5
rank: 0

* rank: 0 — means that shape 5 results from the Argument with index 0.

Example:

Draw([118]> bopwho 68
the shape is new

EF: (58, 12),

FF curves: (12, 56)
FF curves: (12, 64),

This means that shape 68 is a result of the following interferences:

* EF: (58, 12) — edge 58 / face 12
* FF curves: (12, 56) — edge from the intersection curve between faces 12 and 56

* FF curves: (12, 64) — edge from the intersection curve between faces 12 and 64

8.3.11 bopnews
Syntax:

bopnews -v [-e]

+ -v—displays all new vertices produced during the operation;

» -e—displays all new edges produced during the operation.

8.4 Commands for the Building Part

The commands listed below are available when the Building Part of the algorithm is done (i.e. after the command
bbuild).

(c) Open CASCADE 2018

8.4 Commands for the Building Part 158

8.4.1 bopim
Syntax:

bopim S

Shows the compound of shapes that are images of shape S from the argument.

(c) Open CASCADE 2018

9.1 IGES commands 159

9 Data Exchange commands

This chapter presents some general information about Data Exchange (DE) operations.

DE commands are intended for translation files of various formats (IGES,STEP) into OCCT shapes with their at-
tributes (colors, layers etc.)

This files include a number of entities. Each entity has its own number in the file which we call label and denote as
for a STEP file and D for an IGES file. Each file has entities called roots (one or more). A full description of such
entities is contained in the Users' Guides

e for STEP format and

e for IGES format.

Each Draw session has an interface model, which is a structure for keeping various information.

The first step of translation is loading information from a file into a model. The second step is creation of an
OpenCASCADE shape from this model.

Each entity from a file has its own number in the model (num). During the translation a map of correspondences
between labels(from file) and numbers (from model) is created.

The model and the map are used for working with most of DE commands.
9.1 IGES commands

9.1.1 igesread

Syntax:

igesread <file_name> <result_shape_name> [<selection>]

Reads an IGES file to an OCCT shape. This command will interactively ask the user to select a set of entities to be
converted.

N | Mode Description

0 End finish conversion and exit igesbrep

1 Visible roots | convert only visible roots

2 All roots convert all roots

3 One entity convert entity with number provided by the user
4 Selection convert only entities contained in selection

After the selected set of entities is loaded the user will be asked how loaded entities should be converted into OCCT
shapes (e.g., one shape per root or one shape for all the entities). It is also possible to save loaded shapes in files,
and to cancel loading.

The second parameter of this command defines the name of the loaded shape. If several shapes are created, they
will get indexed names. For instance, if the last parameter was s, they willbe s 1, ... s N.

< selection> specifies the scope of selected entities in the model, by default it is xst-transferrable-roots. If we use
symbol * as <selection> all roots will be translated.

See also the detailed description of Selecting IGES entities.

Example:

translation all roots from file
igesread /disk0l/files/model.igs a =

(c) Open CASCADE 2018

user_guides__step.html#occt_step_1
user_guides__iges.html#occt_iges_1
user_guides__iges.html#occt_iges_2_3_4

9.2 STEP commands 160

9.1.2 tplosttrim
Syntax:

tplosttrim [<IGES_type>]

Sometimes the trimming contours of IGES faces (i.e., entity 141 for 143, 142 for 144) can be lost during translation
due to fails. This command gives us a number of lost trims and the number of corresponding IGES entities. It
outputs the rank and numbers of faces that lost their trims and their numbers for each type (143, 144, 510) and
their total number. If a face lost several of its trims it is output only once. Optional parameter </GES_type> can be
0TrimmedSurface, BoundedSurface or Face to specify the only type of IGES faces.

Example:

tplosttrim TrimmedSurface

9.1.3 brepiges
Syntax:

brepiges <shape_name> <filename.igs>

Writes an OCCT shape to an IGES file.

Example:

write shape with name aa to IGES file
brepiges aa /diskl/tmp/aaa.igs

== unit (write) : MM
== mode write : Faces
== To modifiy : command param

== 1 Shapes written, giving 345 Entities

== Now, to write a file, command : writeall filename
Output on file : /diskl/tmp/aaa.igs

Write OK

9.2 STEP commands

These commands are used during the translation of STEP models.

9.21 stepread
Syntax:

stepread file_name result_shape_name [selection]

Read a STEP file to an OCCT shape. This command will interactively ask the user to select a set of entities to be
converted:

N | Mode Description

0 End Finish transfer and exit stepread

1 root with rank 1 | Transfer first root

2 root by its rank | Transfer root specified by its rank

3 | One entity Transfer entity with a number provided by the user
4 Selection Transfer only entities contained in selection

After the selected set of entities is loaded the user will be asked how loaded entities should be converted into O«

(c) Open CASCADE 2018

9.3 General commands 161

CCT shapes. The second parameter of this command defines the name of the loaded shape. If several shapes are
created, they will get indexed names. For instance, if the last parameter was s, they willbe s_1, ... s_N. <selection>
specifies the scope of selected entities in the model. If we use symbol x as <selection> all roots will be translated.

See also the detailed description of Selecting STEP entities.

Example:

translation all roots from file
stepread /disk01l/files/model.stp a *

9.2.2 stepwrite
Syntax:

stepwrite mode shape_name file_name

Writes an OCCT shape to a STEP file.

The following modes are available :

* a-—as is —the mode is selected automatically depending on the type & geometry of the shape;
* m— manifold_solid_brep or brep_with_voids

» f— faceted_brep

* w— geometric_curve_set

* s—shell_based surface_model

For further information see Writing a STEP file.
Example:

Let us write shape ato a STEP file in mode 0.

stepwrite 0 a /diskl/tmp/aaa.igs

9.3 General commands

These are auxilary commands used for the analysis of result of translation of IGES and STEP files.

9.3.1 count
Syntax:

count <counter> [<selection>]

Calculates statistics on the entities in the model and outputs a count of entities.

The optional selection argument, if specified, defines a subset of entities, which are to be taken into account. The
first argument should be one of the currently defined counters.

Counter Operation
xst-types Calculates how many entities of each OCCT type exist
step214-types | Calculates how many entities of each STEP type exist

Example:

(c) Open CASCADE 2018

user_guides__step.html#occt_step_2_3_6

9.3 General commands 162

count xst-types

9.3.2 data

Syntax:

data <symbol>

Obtains general statistics on the loaded data. The information printed by this command depends on the symbol
specified.

Example:

print full information about warnings and fails
data c

Symbol | Output
g Prints the information contained in the header of the file

corf Prints messages generated during the loading of the STEP file (when the procedure of the integrity
of the loaded data check is performed) and the resulting statistics (f works only with fail messages
while ¢ with both fail and warning messages)

t The same as c or f, with a list of failed or warned entities
mor | The same as t but also prints a status for each entity
e Lists all entities of the model with their numbers, types, validity status etc.
R The same as e but lists only root entities
9.3.3 elabel
Syntax:

elabel <num>

Entities in the IGES and STEP files are numbered in the succeeding order. An entity can be identified either by its
number or by its label. Label is the letter ‘#'(for STEP, for IGES use ‘D’) followed by the rank. This command gives
us a label for an entity with a known number.

Example:

elabel 84

9.3.4 entity
Syntax:

entity <#(D)>_or_<num> <level of_information>

The content of an IGES or STEP entity can be obtained by using this command. Entity can be determined by its
number or label. <level of information> has range [0-6]. You can get more information about this level using this
command without parameters.

Example:

full information for STEP entity with label 84
entity #84 6

(c) Open CASCADE 2018

9.3 General commands 163

9.3.5 enum

Syntax:

enum <# (D) >

Prints a number for the entity with a given label.

Example:

give a number for IGES entity with label 21
enum D21

9.3.6 estatus

Syntax:

estatus <# (D)>_or_<num>

The list of entities referenced by a given entity and the list of entities referencing to it can be obtained by this
command.

Example:

estatus #315

9.3.7 fromshape

Syntax:

fromshape <shape_name>

Gives the number of an IGES or STEP entity corresponding to an OCCT shape. If no corresponding entity can
be found and if OCCT shape is a compound the command explodes it to subshapes and try to find corresponding
entities for them.

Example:

fromshape a_1_23

9.3.8 givecount

Syntax:

givecount <selection_name> [<selection_name>]

Prints a number of loaded entities defined by the selection argument. Possible values of <selection_name> you
can find in the “IGES FORMAT Users’s Guide”.

Example:

givecount xst-model-roots

9.3.9 givelist

Syntax:

givelist <selection_name>

Prints a list of a subset of loaded entities defined by the selection argument:

(c) Open CASCADE 2018

9.3 General commands

164

Selection Description

xst-model-all all entities of the model

xst-model-roots all roots

xst-pointed (Interactively) pointed entities (not used in DRAW)
xst-transferrable-all all transferable (recognized) entities
xst-transferrable-roots | Transferable roots

Example:

give a list of all entities of the model

givelist xst-model-all

9.3.10 listcount

Syntax: listcount <counter> [<selection> ...]

Prints a list of entities per each type matching the criteria defined by arguments. Optional <selection> argument, if
specified, defines a subset of entities, which are to be taken into account. Argument <counter> should be one of

the currently defined counters:

Counter

Operation

xst-types

Calculates how many entities of each OCCT type exist

iges-types

Calculates how many entities of each IGES type and form exist

iges-levels

Calculates how many entities lie in different IGES levels

Example:

listcount xst-types

9.3.11 listitems

Syntax:

listitems

This command prints a list of objects (counters, selections etc.) defined in the current session.

9.3.12 listtypes

Syntax:

listtypes [<selection_name> ...

Gives a list of entity types which were encountered in the last loaded file (with a number of entities of each type).
The list can be shown not for all entities but for a subset of them. This subset is defined by an optional selection

argument.

9.3.13 newmodel

Syntax:

newmodel

Clears the current model.

(c) Open CASCADE 2018

9.3 General commands 165

9.3.14 param
Syntax:

param [<parameter>] [<value>]

This command is used to manage translation parameters. Command without arguments gives a full list of parame-
ters with current values. Command with <parameter> (without

) gives us the current value of this parameter and all possible values for it. Command with
sets this new value to <parameter>.
Example:

Let us get the information about possible schemes for writing STEP file :

param write.step.schema

9.3.15 sumcount
Syntax:

sumcount <counter> [<selection> ...]

Prints only a number of entities per each type matching the criteria defined by arguments.

Example:

sumcount xst-types

9.3.16 tpclear
Syntax:

tpclear

Clears the map of correspondences between IGES or STEP entities and OCCT shapes.

9.3.17 tpdraw
Syntax:

tpdraw <# (D) >_or_<num>

Example:

tpdraw 57

9.3.18 tpent
Syntax:

tpent <# (D)>_or_<num>

Get information about the result of translation of the given IGES or STEP entity.

Example:

tpent \#23

(c) Open CASCADE 2018

9.3 General commands 166

9.3.19 tpstat
Syntax:

tpstat [x]|?]<symbol> [<selection>]

Provides all statistics on the last transfer, including a list of transferred entities with mapping from IGES or STEP
to OCCT types, as well as fail and warning messages. The parameter <symbol> defines what information will be
printed:

+ g— General statistics (a list of results and messages)

» ¢— Count of all warning and fail messages

« C— List of all warning and fail messages

+ f—Count of all fail messages

» F— List of all fail messages

» n— List of all transferred roots

* s— The same, with types of source entity and the type of result

* b— The same, with messages

» t— Count of roots for geometrical types

» r— Count of roots for topological types

« |—The same, with the type of the source entity

The sign * before parameters n, s, b, t, rmakes it work on all entities (not only on roots).

The sign ? before n, s, b, tlimits the scope of information to invalid entities.

Optional argument <selection> can limit the action of the command to the selection, not to all entities.
To get help, run this command without arguments.

Example:

translation ratio on IGES faces
tpstat 1 iges-faces

9.3.20 xload
Syntax:

xload <file_name>

This command loads an IGES or STEP file into memory (i.e. to fill the model with data from the file) without creation
of an OCCT shape.

Example:

xload /diskl/tmp/aaa.stp

(c) Open CASCADE 2018

9.4 Overview of XDE commands 167

9.4 Overview of XDE commands

These commands are used for translation of IGES and STEP files into an XCAF document (special document is
inherited from CAF document and is intended for Extended Data Exchange (XDE)) and working with it. XDE
translation allows reading and writing of shapes with additional attributes — colors, layers etc. All commands can be
divided into the following groups:

+ XDE translation commands
+ XDE general commands

+ XDE shape’s commands

+ XDE color's commands

+ XDE layer's commands

+ XDE property’s commands

Reminding: All operations of translation are performed with parameters managed by command param.

9.4.1 Readlges
Syntax:

ReadIges document file_name

Reads information from an IGES file to an XCAF document.

Example:

ReadIges D /diskl/tmp/aaa.igs
==> Document saved with name D

9.4.2 ReadStep
Syntax:

ReadStep <document> <file_name>

Reads information from a STEP file to an XCAF document.

Example:

ReadStep D /diskl/tmp/aaa.stp
== Document saved with name D

9.43 Writelges
Syntax:

WriteIges <document> <file_name>

Example:

WriteIges D /diskl/tmp/aaa.igs

(c) Open CASCADE 2018

9.4 Overview of XDE commands 168

9.44 WriteStep

Syntax:

WriteStep <document> <file_name>

Writes information from an XCAF document to a STEP file.

Example:

WriteStep D /diskl/tmp/aaa.stp

9.45 XFileCur
Syntax:

XFileCur

Returns the name of file which is set as the current one in the Draw session.

Example:

XFileCur
== xasl-ct-203.stpx*

9.4.6 XFileList
Syntax:

XFileList

Returns a list all files that were transferred by the last transfer. This command is meant (assigned) for the assemble
step file.

Example:

XFileList

==> xasl-ct-Bolt.stp*

==> xasl-ct-L-Bracktet.stpx*
==> xasl-ct-LBA.stpx

==> xasl-ct-NBA.stpx

==> ...

9.47 XFileSet
Syntax:

XFileSet <filename>

Sets the current file taking it from the components list of the assemble file.

Example:

XFileSet asl-ct-NBA.stp

(c) Open CASCADE 2018

9.5 XDE general commands 169

9.48 XFromShape

Syntax:

XFromShape <shape>

This command is similar to the command fromshape, but gives additional information about the file name. It is useful
if a shape was translated from several files.

Example:
XFromShape a

==> Shape a: imported from entity 217:#26 in file asl-ct-Nut.stp

9.5 XDE general commands
9.5.1 XNewDoc

Syntax:

XNewDoc <document>

Creates a new XCAF document.
Example:

XNewDoc D

9.5.2 XShow

Syntax:

XShow <document> [<labell> ...]

Shows a shape from a given label in the 3D viewer. If the label is not given — shows all shapes from the document.

Example:
show shape from label 0:1:1:4 from document D

XShow D 0:1:1:4

9.5.3 XStat

Syntax:

XStat <document>

Prints common information from an XCAF document.

Example:

XStat D

==>Statistis of shapes in the document:
==>]level N 0 : 9

=>level N 1 : 18

==>level N 2 : 5

==>Total number of labels for shapes in the document = 32
==>Number of labels with name = 27
==>Number of labels with color link = 3

==Number of labels with layer link = 0
==>Statistis of Props in the document:
==>Number of Centroid Props 5
==>Number of Volume Props =
==>Number of Area Props = 5
==>Number of colors = 4
==>BLUE1l RED YELLOW BLUE2
==>Number of layers = 0

5

(c) Open CASCADE 2018

9.6 XDE shape commands 170

9.5.4 XWdump
Syntax:

XWdump <document> <filename>

Saves the contents of the viewer window as an image (XWD, png or BMP file). <filename> must have a corre-
sponding extention.

Example:

XWdump D /diskl/tmp/image.png

9.55 Xdump
Syntax:

Xdump <document> [int deep {0]1}]

Prints information about the tree structure of the document. If parameter 1 is given, then the tree is printed with a
link to shapes.

Example:

Xdump D 1

==> ASSEMBLY 0:1:1:1 L-BRACKET (0xe8180448)
==> ASSEMBLY 0:1:1:2 NUT (0xe82151e8)

==> ASSEMBLY 0:1:1:3 BOLT (0xe829b000)

==> ASSEMBLY 0:1:1:4 PLATE (0xe8387780)

==> ASSEMBLY 0:1:1:5 ROD (0xe8475418)

==> ASSEMBLY 0:1:1:6 AS1(0xe8476968)

ASSEMBLY 0:1:1:7 L-BRACKET-ASSEMBLY (0xe8476230)

\%

==> ASSEMBLY 0:1:1:1 L-BRACKET (0xe8180448)

==> ASSEMBLY 0:1:1:8 NUT-BOLT-ASSEMBLY (0xe8475ec0)
==> ASSEMBLY 0:1:1:2 NUT (0xe82151e8)

==> ASSEMBLY 0:1:1:3 BOLT (0xe829b000)

etc

9.6 XDE shape commands
9.6.1 XAddComponent
Syntax:

XAddComponent <document> <label> <shape>

Adds a component shape to assembly.
Example:

Let us add shape b as component shape to assembly shape from label 0:7:7:1

XAddComponent D 0:1:1:1 b

9.6.2 XAddShape
Syntax:

XAddShape <document> <shape> [makeassembly=1]

(c) Open CASCADE 2018

9.6 XDE shape commands 171

Adds a shape (or an assembly) to a document. If this shape already exists in the document, then prints the label
which points to it. By default, a new shape is added as an assembly (i.e. last parameter 1), otherwise it is necessary
to pass 0 as the last parameter.

Example:

add shape b to document D

XAddShape D b 0

== 0:1:1:10

if pointed shape is compound and last parameter in
XAddShape command is used by default (1), then for
each subshapes new label is created

9.6.3 XFindComponent
Syntax:

XFindComponent <document> <shape>

Prints a sequence of labels of the assembly path.

Example:

XFindComponent D b

9.6.4 XFindShape
Syntax:

XFindShape <document> <shape>

Finds and prints a label with an indicated top-level shape.

Example:

XFindShape D a

9.6.5 XGetFreeShapes
Syntax:

XGetFreeShapes <document> [shape_prefix]

Print labels or create DRAW shapes for all free shapes in the document. If shape_prefix is absent — prints labels,
else — creates DRAW shapes with names shape_prefix_num (i.e. for example: there are 3 free shapes and shape«
_prefix = a therefore shapes will be created with names a_1, a_2 and a_3).

Note: a free shape is a shape to which no other shape refers to.

Example:
XGetFreeShapes D
== 0:1:1:6 0:1:1:10 0:1:1:12 0:1:1:13

XGetFreeShapes D sh
== sh_1 sh_2 sh_3 sh_4

(c) Open CASCADE 2018

9.6 XDE shape commands 172

9.6.6 XGetOneShape

Syntax:

XGetOneShape <shape> <document>

Creates one DRAW shape for all free shapes from a document.

Example:

XGetOneShape a D

9.6.7 XGetReferredShape

Syntax:

XGetReferredShape <document> <label>

Prints a label that contains a top-level shape that corresponds to a shape at a given label.

Example:

XGetReferredShape D 0:1:1:1:1

9.6.8 XGetShape

Syntax:

XGetShape <result> <document> <label>

Puts a shape from the indicated label in document to result.

Example:

XGetShape b D 0:1:1:3

9.6.9 XGetTopLevelShapes

Syntax:

XGetTopLevelShapes <document>

Prints labels that contain top-level shapes.
Example:

XGetTopLevelShapes D
== 0:1:1:1 0:1:1:2 0:1:1:3 0:1:1:4 0:1:1:5 0:1:1:6 0:1:1:7
0:1:1:8 0:1:1:9

9.6.10 XLabellnfo

Syntax:

XLabelInfo <document> <label>

Prints information about a shape, stored at an indicated label.
Example:

XLabelInfo D 0:1:1:6
==> There are TopLevel shapes. There is an Assembly. This Shape is not used.

(c) Open CASCADE 2018

9.6 XDE shape commands

173

9.6.11 XNewShape
Syntax:

XNewShape <document>

Creates a new empty top-level shape.

Example:

XNewShape D

9.6.12 XRemoveComponent

Syntax:

XRemoveComponent <document> <label>

Removes a component from the components label.

Example:

XRemoveComponent D 0:1:1:1:1

9.6.13 XRemoveShape
Syntax:

XRemoveShape <document> <label>

Removes a shape from a document (by it’s label).

Example:

XRemoveShape D 0:1:1:2

9.6.14 XSetShape
Syntax:

XSetShape <document> <label> <shape>

Sets a shape at the indicated label.

Example:

XSetShape D 0:1:1:3 b

9.6.15 XUpdateAssemblies

Syntax:

XUpdateAssemblies <document>

Updates all assembly compounds in the XDE document.

Example:

XUpdateAssemblies D

(c) Open CASCADE 2018

9.7 XDE color commands

174

9.7 XDE color commands
9.7.1 XAddColor

Syntax:

XAddColor <document> <R> <G>

Adds color in document to the color table. Parameters R,G,B are real.

Example:

XAddColor D 0.5 0.25 0.25

9.7.2 XFindColor

Syntax:

XFindColor <document> <R> <G>

Finds a label where the indicated color is situated.
Example:

XFindColor D 0.25 0.25 0.5
==> 0:1:2:2

9.7.3 XGetAllColors

Syntax:

XGetAllColors <document>

Prints all colors that are defined in the document.
Example:

XGetAllColors D
==> RED DARKORANGE BLUEl GREEN YELLOW3

9.7.4 XGetColor

Syntax:

XGetColor <document> <label>

Returns a color defined at the indicated label from the color table.
Example:

XGetColor D 0:1:2:3

== BLUEL

9.7.5 XGetObjVisibility

Syntax:

XGetObjVisibility <document> {<label>|<shape>}
Returns the visibility of a shape.

Example:

XGetObjVisibility D 0:1:1:4

(c) Open CASCADE 2018

9.7 XDE color commands

175

9.7.6 XGetShapeColor

Syntax:

XGetShapeColor <document> <label> <colortype(s|c)>

Returns the color defined by label. If colortype='s’ — returns surface color, else — returns curve color.

Example:

XGetShapeColor D 0:1:1:4 ¢

9.7.7 XRemoveColor
Syntax:

XRemoveColor <document> <label>

Removes a color from the color table in a document.

Example:

XRemoveColor D 0:1:2:1

9.7.8 XSetColor

Syntax:

XSetColor <document> {<label>|<shape>} <R> <G>

Sets an RGB color to a shape given by label.

Example:

XsetColor D 0:1:1:4 0.5 0.5 0.

9.7.9 XSetObjVisibility
Syntax:

XSetObjVisibility <document> {<label>|<shape>} {01}

Sets the visibility of a shape.

Example:

set shape from label 0:1:1:4 as invisible
XSetObjVisibility D 0:1:1:4 0

9.7.10 XUnsetColor
Syntax:

XUnsetColor <document> {<label>|<shape>} <colortype>

Unset a color given type (‘s’ or ‘c’) for the indicated shape.

Example:

XUnsetColor D 0:1:1:4 s

(c) Open CASCADE 2018

9.8 XDE layer commands 176

9.8 XDE layer commands
9.8.1 XAddLayer

Syntax:

XAddLayer <document> <layer>
Adds a new layer in an XCAF document.
Example:

XAddLayer D layer2

9.8.2 XFindLayer

Syntax:

XFindLayer <document> <layer>

Prints a label where a layer is situated.
Example:

XFindLayer D Bolt
== 0:1:3:2

9.8.3 XGetAllLayers

Syntax:

XGetAllLayers <document>
Prints all layers in an XCAF document.
Example:

XGetAllLayers D
== %0:1:1:3%x xBoltx x0:1:1:9%

9.8.4 XGetLayers

Syntax:

XGetLayers <document> {<shape>|<label>}

Returns names of layers, which are pointed to by links of an indicated shape.
Example:

XGetLayers D 0:1:1:3
== xbolt* %123

9.8.5 XGetOneLayer

Syntax:

XGetOnelayer <document> <label>

Prints the name of a layer at a given label.
Example:

XGetOneLayer D 0:1:3:2

(c) Open CASCADE 2018

9.8 XDE layer commands 177

9.8.6 XlsVisible

Syntax:

XIsVisible <document> {<label>|<layer>}

Returns 1 if the indicated layer is visible, else returns 0.

Example:

XIsVisible D 0:1:3:1

9.8.7 XRemoveAllLayers

Syntax:

XRemoveAllLayers <document>

Removes all layers from an XCAF document.

Example:

XRemoveAllLayers D

9.8.8 XRemoveLayer

Syntax:

XRemoveLayer <document> {<label>|<layer>}

Removes the indicated layer from an XCAF document.

Example:

XRemovelayer D layer2

9.8.9 XSetLayer

Syntax:

XSetLayer XSetLayer <document> {<shape>|<label>} <layer> [shape_in_one_layer {0|1}]

Sets a reference between a shape and a layer (adds a layer if it is necessary). Parameter <shape_in_one_layer>
shows whether a shape could be in a number of layers or only in one (0 by default).

Example:

XSetLayer D 0:1:1:2 layer2

9.8.10 XSetVisibility

Syntax:

XSetVisibility <document> {<label>|<layer>} <isvisible {0]1}>
Sets the visibility of a layer.

Example:

set layer at label 0:1:3:2 as invisible
XSetVisibility D 0:1:3:2 0

(c) Open CASCADE 2018

9.9 XDE property commands

178

9.8.11 XUnSetAllLayers
Syntax:

XUnSetAllLayers <document> {<label>|<shape>}

Unsets a shape from all layers.

Example:

XUnSetAllLayers D 0:1:1:2

9.8.12 XUnSetLayer

Syntax:

XUnSetLayer <document> {<label>|<shape>} <layer>

Unsets a shape from the indicated layer.

Example:

XUnSetLayer D 0:1:1:2 layerl

9.9 XDE property commands
9.9.1 XCheckProps

Syntax:

XCheckProps <document> [{0|deflection} [<shape>|<label>]

Gets properties for a given shape (volume, area and centroid) and compares them with the results after internal
calculations. If the second parameter is 0, the standard OCCT tool is used for the computation of properties. If the
second parameter is not 0, it is processed as a deflection. If the deflection is positive the computation is done by

triangulations, if it is negative — meshing is forced.

Example:

check properties for shapes at label 0:1:1:1 from
document using standard Open CASCADE Technology tools

XCheckProps D 0 0:1:1:1

== Label 0:1:1:1 ; L-BRACKET *
== Area defect: -0.0 (0%)
Volume defect: 0.0 (0%)

CG defect: dX=-0.000, dYy=0.000, dz=0.000

9.9.2 XGetArea
Syntax:

XGetArea <document> {<shape>|<label>}

Returns the area of a given shape.

Example:

XGetArea D 0:1:1:1
== 24628.31815094999

(c) Open CASCADE 2018

9.9 XDE property commands

179

9.9.3 XGetCentroid

Syntax:

XGetCentroid <document> {<shape>|<label>}

Returns the center of gravity coordinates of a given shape.

Example:

XGetCentroid D 0:1:1:1

9.9.4 XGetVolume

Syntax:

XGetVolume <document> {<shape>|<label>}

Returns the volume of a given shape.

Example:

XGetVolume D 0:1:1:1

9.9.5 XSetArea

Syntax:

XSetArea <document> {<shape>|<label>} <area>

Sets new area to attribute list ??? given shape.

Example:

XSetArea D 0:1:1:1 2233.99

9.9.6 XSetCentroid

Syntax:

XSetCentroid <document> {<shape>|<label>} <x> <y> <z>

Sets new center of gravity to the attribute list given shape.

Example:

XSetCentroid D 0:1:1:1 0. 0. 100.

9.9.7 XSetMaterial

Syntax:

XSetMaterial <document> {<shape>|<label>} <name> <density(g/cu sm)>

Adds a new label with material into the material table in a document, and adds a link to this material to the attribute

list of a given shape or a given label. The last parameter sets the density of a pointed material.

Example:

XSetMaterial D 0:1:1:1 Titanium 8899.77

(c) Open CASCADE 2018

9.9 XDE property commands

180

9.9.8 XSetVolume

Syntax:

XSetVolume <document> {<shape>|<label>} <volume>

Sets new volume to the attribute list ??? given shape.

Example:

XSetVolume D 0:1:1:1 444555.33

9.9.9 XShapeMassProps

Syntax:

XShapeMassProps <document> [<deflection> [{<shape>|<label>}

Computes and returns real mass and real center of gravity for a given shape or for all shapes in a document. The
second parameter is used for calculation of the volume and CG(center of gravity). If it is 0, then the standard

CASCADE tool (geometry) is used for computation, otherwise — by triangulations with a given deflection.

Example:

XShapeMassProps D

== Shape from label : 0:1:1:1

== Mass = 193.71681469282299

== CenterOfGravity X = 14.594564763807696,Y =
20.20271885211281,Z = 49.999999385313245

== Shape from label : 0:1:1:2 not have a mass

etc.

9.9.10 XShapeVolume
Syntax:

XShapeVolume <shape> <deflection>

Calculates the real volume of a pointed shape with a given deflection.

Example:

XShapeVolume a 0

(c) Open CASCADE 2018

10 Shape Healing commands 181

10 Shape Healing commands

10.1 General commands
10.1.1 bsplres
Syntax:

bsplres <result> <shape> <tol3d> <tol2d< <regdegree> <regnbsegments> <continuity3d> <continuity2d>
<PriorDeg> <RationalConvert>

Performs approximations of a given shape (BSpline curves and surfaces or other surfaces) to BSpline with given
required parameters. The specified continuity can be reduced if the approximation with a specified continuity was
not done successfully. Results are put into the shape, which is given as a parameter result. For a more detailed
description see the ShapeHealing User’s Guide (operator: BSplineRestriction).

10.1.2 checkfclass2d

Syntax:

checkfclass2d <face> <ucoord> <vcoord>

Shows where a point which is given by coordinates is located in relation to a given face — outbound, inside or at the
bounds.

Example:

checkfclass2d £ 10.5 1.1
== Point is OUT

10.1.3 checkoverlapedges
Syntax:

checkoverlapedges <edgel> <edge2> [<toler> <domaindist>]

Checks the overlapping of two given edges. If the distance between two edges is less than the given value of
tolerance then edges are overlapped. Parameter <domaindist> sets length of part of edges on which edges are
overlapped.

Example:

checkoverlapedges el e2

10.1.4 comtol

Syntax:

comptol <shape> [nbpoints] [prefix]

Compares the real value of tolerance on curves with the value calculated by standard (using 23 points). The
maximal value of deviation of 3d curve from pcurve at given simple points is taken as a real value (371 is by default).
Command returns the maximal, minimal and average value of tolerance for all edges and difference between real
values and set values. Edges with the maximal value of tolerance and relation will be saved if the ‘prefix’ parameter
is given.

Example:

(c) Open CASCADE 2018

10.1 General commands 182

comptol h 871 t

==> Edges tolerance computed by 871 points:

==> MAX=8.0001130696523449e-008 AVG=6.349346868091096e-009 MIN=0
==> Relation real tolerance / tolerance set in edge

==> MAX=0.80001130696523448 AVG=0.06349345591805905 MIN=0

==> Edge with max tolerance saved to t_edge_tol

==> Concerned faces saved to shapes t_1, t_2

10.1.5 convtorevol
Syntax:

convtorevol <result> <shape>

Converts all elementary surfaces of a given shape into surfaces of revolution. Results are put into the shape, which
is given as the <result> parameter.

Example:

convtorevol r a

10.1.6 directfaces
Syntax:

directfaces <result> <shape>

Converts indirect surfaces and returns the results into the shape, which is given as the result parameter.

Example:

directfaces r a

10.1.7 expshape
Syntax:

expshape <shape> <maxdegree> <maxseg>

Gives statistics for a given shape. This test command is working with Bezier and BSpline entities.

Example:

expshape a 10 10
==> Number of Rational Bspline curves 128
==> Number of Rational Bspline pcurves 48

10.1.8 fixsmall
Syntax:

fixsmall <result> <shape> [<toler>=1l.]

Fixes small edges in given shape by merging adjacent edges with agiven tolerance. Results are put into the shape,
which is given as the result parameter.

Example:

fixsmall r a 0.1

(c) Open CASCADE 2018

10.1 General commands 183

10.1.9 fixsmalledges

Syntax:

fixsmalledges <result> <shape> [<toler> <mode> <maxangle>]

Searches at least one small edge at a given shape. If such edges have been found, then small edges are merged
with a given tolerance. If parameter <mode> is equal to Standard_True (can be given any values, except 2), then
small edges, which can not be merged, are removed, otherwise they are to be kept (Standard_False is used by
default). Parameter <maxangle> sets a maximum possible angle for merging two adjacent edges, by default no
limit angle is applied (-1). Results are put into the shape, which is given as parameter result.

Example:

fixsmalledges r a 0.1 1

10.1.10 fixshape

Syntax:
fixshape <result> <shape> [<preci> [<maxpreci>]] [{switches}]
Performs fixes of all sub-shapes (such as Solids, Shells, Faces, Wires and Edges) of a given shape. Parameter

<preci> sets a basic precision value, <maxpreci> sets the maximal allowed tolerance. Results are put into the
shape, which is given as parameter result. {switches} allows to tune parameters of ShapeFix

The following syntax is used:

* <symbol> may be

— "-"to set parameter off,

"+" to set on or
— "x" to set default
* <parameter> is identified by letters:

— | = FixLackingMode

— 0 — FixOrientationMode

— h — FixShiftedMode

— m — FixMissingSeamMode

— d — FixDegeneratedMode

— s — FixSmallMode

— i — FixSelfIntersectionMode

— n — FixNotchedEdgesMode For enhanced message output, use switch '+?"

Example:

fixshape r a 0.001

10.1.11 fixwgaps

Syntax:

fixwgaps <result> <shape> [<toler>=0]

Fixes gaps between ends of curves of adjacent edges (both 3d and pcurves) in wires in a given shape with a given
tolerance. Results are put into the shape, which is given as parameter result.

Example:

fixwgaps r a

(c) Open CASCADE 2018

10.1 General commands 184

10.1.12 offsetcurve, offset2dcurve

Syntax:

offsetcurve <result> <curve> <offset> <direction(as point)>
offset2dcurve <result> <curve> <offset>

offsetcurve works with the curve in 3d space, offset2dcurve in 2d space.

Both commands are intended to create a new offset curve by copying the given curve to distance, given by parameter
< offset>. Parameter <direction> defines direction of the offset curve. It is created as a point. For correct work of
these commands the direction of normal of the offset curve must be perpendicular to the plane, the basis curve is
located there. Results are put into the curve, which is given as parameter <resulf>.

Example:

point pp 10 10 10
offsetcurve r ¢ 20 pp

10.1.13 projcurve

Syntax:

projcurve <edge>|<curve3d>|<curve3d first last> <X> <Y> <Z>

projcurve returns the projection of a given point on a given curve. The curve may be defined by three ways: by
giving the edge name, giving the 3D curve and by giving the unlimited curve and limiting it by pointing its start and
finish values.

Example:

projcurve k_1 0 1 5

==Edge k_1 Params from 0 to 1.3

==Precision (BRepBuilderAPI) : 9.9999999999999995e-008 ==Projection : 0 1 5
==Result : 0 1.1000000000000001 O

==Param = -0.20000000000000001 Gap = 5.0009999000199947

10.1.14 projpcurve
Syntax:

projpcurve <edge> <face> <Tol> <X> <Y> <Z> [<start_param>]

projpcurve returns the projection of a given point on a given curve on surface. The curve on surface is defined by
giving the edge and face names. Edge must have curve 2D repesentation on the face. Optional parameter <start—
_param> is any parameter of pcurve, which is used by algoritm as start point for searching projection of given point
with help of local Extrema algorithm. If this parameter is not set, algorithm uses whole parametric interval of pcurve
for searching projection.

Example:

Using global searching

projpcurve f_1 £ 1.e-7 0.877 0 0.479

==Point: 0.87762772831890712 0 0.47934285275342808
==Param: 0.49990578239977856

==Dist: 0.0007152557954264938

Using starting parameter on edge

projpcurve f_ 1 £ 1.e-7 0.877 0 0.479 .6

==Point: 0.87762772831890712 0 0.47934285275342808
==Param: 0.49990578239977856

==Dist: 0.0007152557954264938

(c) Open CASCADE 2018

10.1 General commands 185

10.1.15 projface

Syntax:

projface <face> <X> <Y> [<Z>]

Returns the projection of a given point to a given face in 2d or 3d space. If two coordinates (2d space) are given
then returns coordinates projection of this point in 3d space and vice versa.

Example:

projface a_1 10.0 0.0
== Point UV U =10 V =0
== = proj X = -116 Y = -45 7z =0

10.1.16 scaleshape

Syntax:

scaleshape <result> <shape> <scale>

Returns a new shape, which is the result of scaling of a given shape with a coefficient equal to the parameter
<scale>. Tolerance is calculated for the new shape as well.

Example:

scaleshape r a_1 0.8

10.1.17 settolerance
Syntax:

settolerance <shape> [<mode>=v-e-w-f-a] <val>(fix value) or
<tolmin> <tolmax>

Sets new values of tolerance for a given shape. If the second parameter mode is given, then the tolerance value is
set only for these sub shapes.

Example:

settolerance a 0.001

10.1.18 splitface
Syntax:

splitface <result> <face> [u usplitl usplit2...] [v vsplitl vsplit2 ...]

Splits a given face in parametric space and puts the result into the given parameter <result>. Returns the status
of split face.

Example:

split face f by parameter u = 5
splitface r £ u 5

==> Splitting by U: ;5

==> Status: DONEL

(c) Open CASCADE 2018

10.2 Conversion commands 186

10.1.19 statshape
Syntax:

statshape <shape> [particul]

Returns the number of sub-shapes, which compose the given shape. For example, the number of solids, number of
faces etc. It also returns the number of geometrical objects or sub-shapes with a specified type, example, number
of free faces, number of CO surfaces. The last parameter becomes out of date.

Example:

statshape a

==> Count Item

==> ————— o

==> 402 Edge (oriented)

==> 402 Edge (Shared)

==> 74 Face

==> 74 Face (Free)

==> 804 Vertex (Oriented)

==> 402 Vertex (Shared)

==> 78 Wire

==> 4 Face with more than one wire
==> 34 bspsur: BSplineSurface

10.1.20 tolerance

Syntax:

tolerance <shape> [<mode>:D v e f c] [<tolmin> <tolmax>:real]

Returns tolerance (maximal, avg and minimal values) of all given shapes and tolerance of their Faces, Edges and
Vertices. If parameter <tolmin> or <tolmax> or both of them are given, then sub-shapes are returned as a result
of analys of this shape, which satisfy the given tolerances. If a particular value of entity ((D)all shapes (v) vertices
(e) edges (f) faces (¢) combined (faces)) is given as the second parameter then only this group will be analyzed for
tolerance.

Example:

tolerance a

==> Tolerance MAX=0.31512672416608001 AVG=0.14901359484722074 MIN=9.9999999999999995e-08

==> FACE : MAX=9.9999999999999995e-08 AVG=9.9999999999999995e-08 MIN=9.9999999999999995e-08
==> EDGE : MAX=0.31512672416608001 AVG=0.098691334511810405 MIN=9.9999999999999995e-08

==> VERTEX : MAX=0.31512672416608001 AVG=0.189076074499648 MIN=9.9999999999999995e-08
tolerance a v 0.1 0.001

==> Analysing Vertices gives 6 Shapes between to0ll1=0.10000000000000001 and tol2=0.001 , named tol_1 to
tol_6

10.2 Conversion commands
10.2.1 DT_ClosedSplit

Syntax:

DT_ClosedSplit <result> <shape>

Divides all closed faces in the shape (for example cone) and returns result of given shape into shape, which is given
as parameter result. Number of faces in resulting shapes will be increased. Note: A closed face is a face with one
or more seam.

Example:

DT_ClosetSplit r a

(c) Open CASCADE 2018

10.2 Conversion commands 187

10.2.2 DT_ShapeConvert, DT_ShapeConvertRev

Syntax:

DT_ShapeConvert <result> <shape> <convert2d> <convert3d>
DT_ShapeConvertRev <result> <shape> <convert2d> <convert3d>

Both commands are intended for the conversion of 3D, 2D curves to Bezier curves and surfaces to Bezier based
surfaces. Parameters convert2d and convert3d take on a value 0 or 1. If the given value is 1, then the conversion
will be performed, otherwise it will not be performed. The results are put into the shape, which is given as parameter
Result. Command DT_ShapeConvertRev differs from DT_ShapeConvert by converting all elementary surfaces into
surfaces of revolution first.

Example:

DT_ShapeConvert r a 1 1
== Status: DONE1l

10.2.3 DT_ShapeDivide

Syntax:

DT_ShapeDivide <result> <shape> <tol>

Divides the shape with C1 criterion and returns the result of geometry conversion of a given shape into the shape,
which is given as parameter result. This command illustrates how class ShapeUpgrade ShapeDivideContinuity
works. This class allows to convert geometry with a continuity less than the specified continuity to geometry with
target continuity. If conversion is not possible then the geometrical object is split into several ones, which satisfy the
given tolerance. It also returns the status shape splitting:

+ OK : no splitting was done
» Done1l : Some edges were split
» Done2 : Surface was split

« Faill : Some errors occurred

Example:

DT_ShapeDivide r a 0.001
== Status: OK

10.2.4 DT_SplitAngle

Syntax:

DT_SplitAngle <result> <shape> [MaxAngle=95]

Works with all revolved surfaces, like cylinders, surfaces of revolution, etc. This command divides given revolved
surfaces into segments so that each resulting segment covers not more than the given MaxAngle degrees and puts
the result of splitting into the shape, which is given as parameter result. Values of returned status are given above.
This command illustrates how class ShapeUpgrade ShapeDivideAngle works.

Example:

DT_SplitAngle r a
== Status: DONE2

(c) Open CASCADE 2018

10.2 Conversion commands 188

10.2.5 DT_SplitCurve

Syntax:

DT_SplitCurve <curve> <tol> <split (0[|1)>

Divides the 3d curve with C1 criterion and returns the result of splitting of the given curve into a new curve. If the
curve had been divided by segments, then each segment is put to an individual result. This command can correct
a given curve at a knot with the given tolerance, if it is impossible, then the given surface is split at that knot. If the
last parameter is 1, then 5 knots are added at the given curve, and its surface is split by segments, but this will be
performed not for all parametric spaces.

Example:

DT_SplitCurve r c

10.2.6 DT_SplitCurve2d
Syntax:

DT_SplitCurve2d Curve Tol Split (0/1)

Works just as DT_SplitCurve (see above), only with 2d curve.

Example:

DT_SplitCurve2d r c

10.2.7 DT_SplitSurface
Syntax:

DT_SplitSurface <result> <Surface|GridSurf> <tol> <split (0|1)>

Divides surface with C1 criterion and returns the result of splitting of a given surface into surface, which is given as
parameter result. If the surface has been divided into segments, then each segment is put to an individual result.
This command can correct a given CO surface at a knot with a given tolerance, if it is impossible, then the given
surface is split at that knot. If the last parameter is 1, then 5 knots are added to the given surface, and its surface is
split by segments, but this will be performed not for all parametric spaces.

Example:

(c) Open CASCADE 2018

10.2 Conversion commands 189

split surface with name "su"

DT_SplitSurface res su 0.1 1 ==> single surf ==> appel a SplitSurface::Init ==> appel a SplitSurface::Build ==>
appel a SplitSurface::GlobalU/VKnots ==> nb GlobalU;nb GlobalV=7 20123 45 6.2831853072 0 1 ==> appel a
Surfaces ==> transfert resultat ==>res1 1 1res1 2 1res1 3 1rest 4 1res1 5 1resl 6 1

10.2.8 DT _ToBspl
Syntax:

DT_ToBspl <result> <shape>

Converts a surface of linear extrusion, revolution and offset surfaces into BSpline surfaces. Returns the result into
the shape, which is given as parameter result.

Example:

DT_ToBspl res sh
== error = 5.20375663162094e-08 spans = 10
== Surface is aproximated with continuity 2

(c) Open CASCADE 2018

11 Performance evaluation commands 190

11 Performance evaluation commands

11.1 VDrawSphere
Syntax:

vdrawsphere shapeName Fineness [X=0.0 Y=0.0 Z=0.0] [Radius=100.0] [ToEnableVBO=1] [NumberOfViewerUpdate=1]
[ToShowEdges=0]

Calculates and displays in a given number of steps a sphere with given coordinates, radius and fineness. Returns
the information about the properties of the sphere, the time and the amount of memory required to build it.

This command can be used for visualization performance evaluation instead of the outdated Visualization Perfor-
mance Meter.

Example:

vdrawsphere s 200 1 1 1 500 1

== Compute Triangulation...

== NumberOfPoints: 39602

== NumberOfTriangles: 79200

== Amount of memory required for PolyTriangulation without Normals: 2 Mb
== Amount of memory for colors: 0 Mb

== Amount of memory for PolyConnect: 1 Mb

== Amount of graphic card memory required: 2 Mb

== Number of scene redrawings: 1

== CPU user time: 15.6000999999998950 msec

== CPU system time: 0.0000000000000000 msec

== CPU average time of scene redrawing: 15.6000999999998950 msec

(c) Open CASCADE 2018

12 Simple vector algebra and measurements 191

12 Simple vector algebra and measurements

This section contains description of auxiliary commands that can be useful for simple calculations and manipulations
needed when analyzing complex models.

12.1 Vector algebra commands

This section describes commands providing simple calculations with 2D and 3D vectors. The vector is represented
by a TCL list of double values (coordinates). The commands get input vector coordinates from the command line as
distinct values. So, if you have a vector stored in a variable you need to use eval command as a prefix, for example,
to compute the magnitude of cross products of two vectors given by 3 points the following commands can be used:

Draw[10]> set vecl [vec 12 28 99 12 58 99]

0 30 0

Draw[13]> set vec2 [vec 12 28 99 16 21 89]

4 -7 =10

Draw([14]> set cross [eval cross $vecl $vec2]
-300 0 -120

Draw([15]> eval module S$cross
323.10988842807024

1211 vec
Syntax:

vec <xl1> <yl> <zl> <x2> <y2> <z2>

Returns coordinates of vector between two 3D points.

Example:

vec 1 2 36 5 4

12.1.2 2dvec

Syntax:

2dvec <x1> <yl> <x2> <y2>

Returns coordinates of vector between two 2D points.

Example:

2dvec 1 2 4 3

1213 pln
Syntax:

pln <x1> <yl> <zl> <x2> <y2> <z2> <x3> <y3> <z3>

Returns plane built on three points. A plane is represented by 6 double values: coordinates of the origin point and
the normal directoin.

Example:

pln 123654987

(c) Open CASCADE 2018

12.1 Vector algebra commands

192

12.1.4 module

Syntax:

module <x> <y> <z>

Returns module of a vector.

Example:

module 1 2 3

12.1.5 2dmodule
Syntax:

2dmodule <x> <y>

Returns module of a 2D vector.

Example:

2dmodule 1 2

12.1.6 norm

Syntax:

norm <x> <y> <z>

Returns unified vector from a given 3D vector.

Example:

norm 1 2 3

12.1.7 2dnorm

Syntax:

2dnorm <x> <y>

Returns unified vector from a given 2D vector.

Example:

2dnorm 1 2

12.1.8 inverse
Syntax:

inverse <x> <y> <z>

Returns inversed 3D vector.

Example:

inverse 1 2 3

(c) Open CASCADE 2018

12.1 Vector algebra commands

193

12.1.9 2dinverse
Syntax:

2dinverse <x> <y>

Returns inversed 2D vector.

Example:

2dinverse 1 2

12.1.10 2dort

Syntax:

2dort <x> <y>

Returns 2D vector rotated on 90 degrees.

Example:

2dort 1 2

12.1.11 distpp

Syntax:

distpp <x1> <yl> <zl> <x2> <y2> <z2>

Returns distance between two 3D points.

Example:

distpp 1 2 3 4 5 6

12.1.12 2ddistpp
Syntax:

2ddistpp <x1> <yl> <x2> <y2>

Returns distance between two 2D points.

Example:

2ddistpp 1 2 3 4

12.1.13 distplp

Syntax:

distplp <x0> <y0> <z0> <nx> <ny> <nz> <xp> <yp> <zp>

Returns distance between plane defined by point and normal direction and another point.

Example:

distplp 0 0000156 7

(c) Open CASCADE 2018

12.1 Vector algebra commands 194

12.1.14 distlp

Syntax:

distlp <x0> <y0> <z0> <dx> <dy> <dz> <xp> <yp> <zp>

Returns distance between 3D line defined by point and direction and another point.

Example:

distlp 0 0 0 1 0 0 5 6 7

12.1.15 2ddistlp

Syntax:

2ddistlp <x0> <y0> <dx> <dy> <xp> <yp>

Returns distance between 2D line defined by point and direction and another point.

Example:

2ddistlp 0 0 1 0 5 6

12.1.16 distppp

Syntax:

distppp <x1> <yl> <zl> <x2> <y2> <z2> <x3> <y3> <z3>

Returns deviation of point (x2,y2,z2) from segment defined by points (x1,y1,z1) and (x3,y3,z3).

Example:

distppp 0 0 0 1 1 0 2 0 O

12.1.17 2ddistppp

Syntax:

2ddistppp <x1> <yl> <x2> <y2> <x3> <y3>

Returns deviation of point (x2,y2) from segment defined by points (x1,y1) and (x3,y3). The result is a signed value.
It is positive if the point (x2,y2) is on the left side of the segment, and negative otherwise.

Example:

2ddistppp 0 0 1 -1 2 0

12.1.18 barycen

Syntax:

barycen <x1> <yl> <zl> <x2> <y2> <z2> <par>

Returns point of a given parameter between two 3D points.

Example:

barycen 0 0 0 1 1 1 0.3

(c) Open CASCADE 2018

12.1 Vector algebra commands 195

12.1.19 2dbarycen
Syntax:

2dbarycen <xl1> <yl> <x2> <y2> <par>

Returns point of a given parameter between two 2D points.

Example:

2dbarycen 0 0 1 1 0.3

12.1.20 cross
Syntax:

cross <xl> <yl> <zl> <x2> <y2> <z2>

Returns cross product of two 3D vectors.

Example:

cross 1 00 010

12.1.21 2dcross
Syntax:

2dcross <x1> <yl> <x2> <y2>

Returns cross product of two 2D vectors.

Example:

2dcross 1 0 0 1

12.1.22 dot
Syntax:

dot <x1> <yl> <zl> <x2> <y2> <z2>

Returns scalar product of two 3D vectors.

Example:

dot 100010

12.1.23 2ddot
Syntax:

2ddot <x1> <yl> <x2> <y2>

Returns scalar product of two 2D vectors.

Example:

2ddot 1 0 0 1

(c) Open CASCADE 2018

12.2 Measurements commands

196

12.1.24 scale

Syntax:

scale <x> <y> <z> <factor>

Returns 3D vector multiplied by scalar.

Example:

scale 1 0 0 5

12.1.25 2dscale
Syntax:

2dscale <x> <y> <factor>

Returns 2D vector multiplied by scalar.

Example:

2dscale 1 0 5

12.2 Measurements commands

This section describes commands that make possible to provide measurements on a model.

12.21 pnt
Syntax:

pnt <object>

Returns coordinates of point in the given Draw variable. Object can be of type point or vertex. Actually this command

is built up from the commands mkpoint and coord.

Example:

vertex v 0 1 0
pnt v

12.2.2 pntc
Syntax:

pntc <curv> <par>

Returns coordinates of point on 3D curve with given parameter. Actually this command is based on the command

cvalue.

Example:

circle ¢ 0 0 0 10
pntc ¢ [dval pi/2]

(c) Open CASCADE 2018

12.2 Measurements commands 197

1223 2dpntc

Syntax:

2dpntc <curv2d> <par>

Returns coordinates of point on 2D curve with given parameter. Actually this command is based on the command
2dcvalue.

Example:

circle ¢ 0 0 10
2dpntc ¢ [dval pi/2]

12.2.4 pntsu
Syntax:

pntsu <surf> <u> <v>

Returns coordinates of point on surface with given parameters. Actually this command is based on the command
svalue.

Example:

cylinder s 10
pntsu s [dval pi/2] 5

12.2.5 pntcons
Syntax:

pntcons <curv2d> <surf> <par>

Returns coordinates of point on surface defined by point on 2D curve with given parameter. Actually this command
is based on the commands 2dcvalue and svalue.

Example:

line ¢ 0010
cylinder s 10
pntcons ¢ s [dval pi/2]

12.2.6 drseg
Syntax:

drseg <name> <x1> <yl> <zl> <x2> <y2> <z2>

Creates a linear segment between two 3D points. The new object is given the name. The object is drawn in the
axonometric view.

Example:

drseg s 0 0 01 00

(c) Open CASCADE 2018

12.2 Measurements commands 198

12.2.7 2ddrseg
Syntax:

2ddrseg <name> <x1> <yl> <x2> <y2>

Creates a linear segment between two 2D points. The new object is given the name. The object is drawn in the 2D
view.

Example:

2ddrseg s 0 0 1 0

12.2.8 mpick
Syntax:

mpick

Prints in the console the coordinates of a point clicked by mouse in a view (axonometric or 2D). This command will
wait for mouse click event in a view.

Example:

mpick

12.2.9 mdist
Syntax:

mdist

Prints in the console the distance between two points clicked by mouse in a view (axonometric or 2D). This command
will wait for two mouse click events in a view.

Example:

mdist

(c) Open CASCADE 2018

13 Inspector commands 199

13

Inspector commands

This section describes commands that make possible to use Inspector.

13.1 tinspector

Syntax:

tinspector [-plugins {namel ... [nameN] | all}
[-activate name]
[-shape object [namel] ... [nameN]]
[-open file_name [namel] ... [nameN]]
[-update]
[-select {object | namel ... [nameN]}]
[-show (0|1} = 1]

Starts inspection tool. Options:

plugins enters plugins that should be added in the inspector. Available names are: dfbrowser, vinspector and
shapeview. Plugins order will be the same as defined in the arguments. 'all' adds all available plugins in the
order: DFBrowser, Vinspector and ShapeView. If at the first call this option is not used, 'all' option is applied;

activate activates the plugin in the tool view. If at the first call this option is not used, the first plugin is activated;
shape initializes plugin(s) by the shape object. If 'name' is empty, initializes all plugins;

open gives the file to the plugin(s). If the plugin is active after open, the content will be updated;

update updates content of the active plugin;

select sets the parameter that should be selected in an active tool view. Depending on the active tool the
parameter is: ShapeView: 'object' is an instance of TopoDS_Shape TShape, DFBrowser: 'name' is an entry
of TDF_Label and 'name2' (optionally) for TDF_Attribute type name, Vinspector: 'object' is an instance of
AIS_InteractiveObject,

show sets Inspector view visible or hidden. The first call of this command will show it.

Example:

pload DCAF INSPECTOR

NewDocument Doc BinOcaf

set aSetAttrl 100
set aLabel 0:2
SetInteger Doc ${alLabel} ${aSetAttrl}

tinspector -plugins dfbrowser -select 0:2 TDataStd_Integer

Example:

pload ALL INSPECTOR

box bl 200 100 120
box b2 100 200 220 100 120 100

tinspector -plugins shapeview -shape bl -shape b2 -select bl

Example:

pload ALL INSPECTOR

tinspector -plugins vinspector

vinit

box box_1 100 100 100
vdisplay box_1

(c) Open CASCADE 2018

13.1 tinspector 200

box box_2 180 120 200 150 150 150
vdisplay box_2

viit

vselmode box_1 1 1

vselmode box_1 3 1

tinspector -update -select box_1

(c) Open CASCADE 2018

14 Extending Test Harness with custom commands 201

14 Extending Test Harness with custom commands

The following chapters explain how to extend Test Harness with custom commands and how to activate them using
a plug-in mechanism.

14.1 Custom command implementation
Custom command implementation has not undergone any changes since the introduction of the plug-in mechanism.
The syntax of every command should still be like in the following example.

Example:

static Standard_Integer myadvcurve (Draw_Interpretor& di, Standard_Integer n, charx* a)

{

}

For examples of existing commands refer to Open CASCADE Technology (e.g. GeomliteTest.cxx).

14.2 Registration of commands in Test Harness
To become available in the Test Harness the custom command must be registered in it. This should be done as
follows.

Example:

void MyPack::CurveCommands (Draw_Interpretor& theCommands)

{

charx g = "Advanced curves creation";

theCommands.Add ("myadvcurve", "myadvcurve name pl p2 p3 - Creates my advanced curve from points",
__FILE__, myadvcurve, g);

14.3 Creating a toolkit (library) as a plug-in

All custom commands are compiled and linked into a dynamic library (.dll on Windows, or .so on Unix/Linux). To
make Test Harness recognize it as a plug-in it must respect certain conventions. Namely, it must export function
PLUGINFACTORY/() accepting the Test Harness interpreter object (Draw_Interpretor). This function will be called
when the library is dynamically loaded during the Test Harness session.

This exported function PLUGINFACTORY/() must be implemented only once per library.

For convenience the DPLUGIN macro (defined in the Draw_PluginMacro.hxx file) has been provided. It implements
the PLUGINFACTORY() function as a call to the Package::Factory() method and accepts Package as an argument.
Respectively, this Package::Factory() method must be implemented in the library and activate all implemented
commands.

Example:

#include <Draw_PluginMacro.hxx>

void MyPack::Factory(Draw_Interpretor& theDI)
{

//
MyPack: :CurveCommands (theDI) ;

}

// Declare entry point PLUGINFACTORY
DPLUGIN (MyPack)

(c) Open CASCADE 2018

14.4 Creation of the plug-in resource file 202

14.4 Creation of the plug-in resource file

As mentioned above, the plug-in resource file must be compliant with Open CASCADE Technology requirements
(see Resource_Manager.hxx file for details). In particular, it should contain keys separated from their values by a
colon (;:;;). For every created plug-in there must be a key. For better readability and comprehension it is recom-
mended to have some meaningful name. Thus, the resource file must contain a line mapping this name (key) to the
library name. The latter should be without file extension (.dll on Windows, .so on Unix/Linux) and without the ;lib;
prefix on Unix/Linux. For several plug-ins one resource file can be created. In such case, keys denoting plug-ins
can be combined into groups, these groups — into their groups and so on (thereby creating some hierarchy). Any
new parent key must have its value as a sequence of child keys separated by spaces, tabs or commas. Keys should
form a tree without cyclic dependencies.

Examples (file MyDrawPlugin):

! Hierarchy of plug-ins

ALL : ADVMODELING, MESHING
DEFAULT : MESHING
ADVMODELING : ADVSURF, ADVCURV

! Mapping from naming to toolkits (libraries)

ADVSURF : TKMyAdvSurf
ADVCURV : TKMyAdvCurv
MESHING : TKMyMesh

For other examples of the plug-in resource file refer to the Plug-in resource file chapter above or to the $CASRO«-
OT/src/DrawPlugin file shipped with Open CASCADE Technology.

14.5 Dynamic loading and activation

Loading a plug-in and activating its commands is described in the Activation of the commands implemented in the
plug-in chapter.

The procedure consists in defining the system variables and using the pload commands in the Test Harness session.

Example:

Draw[]> set env(CSF_MyDrawPluginDefaults) /users/test
Draw[]> pload -MyDrawPlugin ALL

(c) Open CASCADE 2018

	Introduction
	Overview
	Contents of this documentation
	Getting started
	Launching DRAW Test Harness
	Plug-in resource file
	Activation of commands implemented in the plug-in

	The Command Language
	Overview
	Syntax of TCL
	Accessing variables in TCL and Draw
	set, unset
	dset, dval
	del, dall

	lists
	Control Structures
	if
	while, for, foreach
	break, continue

	Procedures
	proc
	global, upvar

	Basic Commands
	General commands
	help
	source
	spy
	cpulimit
	wait
	chrono

	Variable management commands
	isdraw, directory
	whatis, dump
	renamevar, copy
	datadir, save, restore

	User defined commands
	set
	get

	Graphic Commands
	Axonometric viewer
	view, delete
	axo, pers, top, ...
	mu, md, 2dmu, 2dmd, zoom, 2dzoom
	pu, pd, pl, pr, 2dpu, 2dpd, 2dpl, 2dpr
	fit, 2dfit
	u, d, l, r
	focal, fu, fd
	color
	dtext
	hardcopy, hcolor, xwd
	wclick, pick
	autodisplay
	display, donly
	erase, clear, 2dclear
	disp, don, era
	repaint, dflush

	AIS viewer -- view commands
	vinit
	vhelp
	vtop
	vaxo
	vsetbg
	vclear
	vrepaint
	vfit
	vzfit
	vreadpixel
	vselect
	vmoveto
	vviewparams
	vchangeselected
	vzclipping
	vnbselected
	vpurgedisplay
	vhlr
	vhlrtype
	vcamera
	vstereo
	vfrustumculling

	AIS viewer -- display commands
	vdisplay
	vdonly
	vdisplayall
	verase
	veraseall
	vsetdispmode
	vdisplaytype
	verasetype
	vtypes
	vaspects
	vsetshading
	vunsetshading
	vsetam
	vunsetam
	vdump
	vdir
	vsub
	vsensdis
	vsensera
	vr
	vstate
	vraytrace
	vrenderparams
	vshaderprog
	vsetcolorbg

	AIS viewer -- object commands
	vtrihedron
	vplanetri
	vsize
	vaxis
	vaxispara
	vaxisortho
	vpoint
	vplane
	vplanepara
	vplaneortho
	vline
	vcircle
	vtri2d
	vselmode
	vconnect
	vtriangle
	vsegment
	vpointcloud
	vclipplane
	vdimension
	vdimparam
	vangleparam
	vlengthparam
	vmovedim

	AIS viewer -- Mesh Visualization Service
	meshfromstl
	meshdispmode
	meshselmode
	meshshadcolor
	meshlinkcolor
	meshmat
	meshshrcoef
	meshshow
	meshhide
	meshhidesel
	meshshowsel
	meshshowall
	meshdelete

	VIS Viewer commands
	ivtkinit
	ivtkdisplay
	ivtkerase
	ivtkfit
	ivtkdispmode
	ivtksetselmode
	ivtkmoveto
	ivtkselect
	ivtkdump
	ivtkbgcolor

	OCAF commands
	Application commands
	NewDocument
	IsInSession
	ListDocuments
	Open
	Close
	Save
	SaveAs

	Basic commands
	Label
	NewChild
	Children
	ForgetAll
	Application commands
	Main
	UndoLimit
	Undo
	Redo
	OpenCommand
	CommitCommand
	NewCommand
	AbortCommand
	Copy
	UpdateLink
	CopyWithLink
	UpdateXLinks
	DumpDocument

	Data Framework commands
	MakeDF
	ClearDF
	CopyDF
	CopyLabel
	MiniDumpDF
	XDumpDF

	General attributes commands
	SetInteger
	GetInteger
	SetReal
	GetReal
	SetIntArray
	GetIntArray
	SetRealArray
	GetRealArray
	SetComment
	GetComment
	SetExtStringArray
	GetExtStringArray
	SetName
	GetName
	SetReference
	GetReference
	SetUAttribute
	GetUAttribute
	SetFunction
	GetFunction
	NewShape
	SetShape
	GetShape

	Geometric attributes commands
	SetPoint
	GetPoint
	SetAxis
	GetAxis
	SetPlane
	GetPlane
	SetGeometry
	GetGeometryType
	SetConstraint
	GetConstraint
	SetVariable
	GetVariable

	Tree attributes commands
	RootNode
	SetNode
	AppendNode
	PrependNode
	InsertNodeBefore
	InsertNodeAfter
	DetachNode
	ChildNodeIterate
	InitChildNodeIterator
	ChildNodeMore
	ChildNodeNext
	ChildNodeValue
	ChildNodeNextBrother

	Standard presentation commands
	AISInitViewer
	AISRepaint
	AISDisplay
	AISUpdate
	AISErase
	AISRemove
	AISSet
	AISDriver
	AISUnset
	AISTransparency
	AISHasOwnTransparency
	AISMaterial
	AISHasOwnMaterial
	AISColor
	AISHasOwnColor

	Geometry commands
	Overview
	Curve creation
	point
	line
	circle
	ellipse
	hyperbola
	parabola
	beziercurve, 2dbeziercurve
	bsplinecurve, 2dbsplinecurve, pbsplinecurve, 2dpbsplinecurve
	uiso, viso
	to3d, to2d
	project

	Surface creation
	plane
	cylinder
	cone
	sphere
	torus
	beziersurf
	bsplinesurf, upbsplinesurf, vpbsplinesurf, uvpbsplinesurf
	trim, trimu, trimv
	offset
	revsurf
	extsurf
	convert

	Curve and surface modifications
	reverse, ureverse, vreverse
	exchuv
	segment, segsur
	iincudeg, incvdeg
	cmovep, movep, movecolp, moverowp
	insertpole, rempole, remcolpole, remrowpole
	insertknot, insertuknot, insertvknot
	remknot, remuknot, remvknot
	setperiodic, setnotperiodic, setuperiodic, setunotperiodic, setvperiodic, setvnotperiodic
	setorigin, setuorigin, setvorigin

	Transformations
	translate, dtranslate
	rotate, 2drotate
	pmirror, lmirror, smirror, dpmirror, dlmirror
	pscale, dpscale

	Curve and surface analysis
	coord
	cvalue, 2dcvalue
	svalue
	localprop, minmaxcurandinf
	parameters
	proj, 2dproj
	surface_radius

	Intersections
	intersect
	2dintersect
	intconcon

	Approximations
	appro, dapprox
	surfapp, grilapp

	Projections
	projponf

	Constraints
	cirtang
	lintan

	Display
	dmod, discr, defle
	nbiso
	clpoles, shpoles
	clknots, shknots

	Topology commands
	Basic topology
	isos, discretisation
	orientation, complement, invert, normals, range
	explode, exwire, nbshapes
	emptycopy, add, compound
	compare
	issubshape

	Curve and surface topology
	vertex
	mkpoint
	edge, mkedge, uisoedge, visoedge
	wire, polyline, polyvertex
	profile
	bsplineprof
	mkoffset
	mkplane, mkface
	mkcurve, mksurface
	pcurve
	chfi2d
	nproject

	Primitives
	box, wedge
	pcylinder, pcone, psphere, ptorus
	halfspace

	Sweeping
	prism
	revol
	pipe
	mksweep, addsweep, setsweep, deletesweep, buildsweep, simulsweep
	thrusections

	Topological transformation
	tcopy
	tmove, treset
	ttranslate, trotate
	tmirror, tscale

	Old Topological operations
	fuse, cut, common
	section, psection
	sewing

	New Topological operations
	bparallelmode
	bop, bopfuse, bopcut, boptuc, bopcommon
	bopsection
	bopcheck, bopargshape

	Drafting and blending
	depouille
	chamf
	blend
	bfuseblend
	bcutblend
	mkevol, updatevol, buildevol

	Defeaturing
	Analysis of topology and geometry
	lprops, sprops, vprops
	bounding
	isbbinterf
	distmini
	xdistef, xdistcs, xdistcc, xdistc2dc2dss, xdistcc2ds
	checkshape
	tolsphere
	validrange

	Surface creation
	gplate,
	filling, fillingparam

	Complex Topology
	offsetshape, offsetcompshape
	featprism, featdprism, featrevol, featlf, featrf
	draft
	deform
	nurbsconvert
	edgestofaces

	History commands
	savehistory
	isdeleted
	modified
	generated
	Enabling Draw history support for the algorithms

	Texture Mapping to a Shape
	vtexture
	vtexscale
	vtexorigin
	vtexrepeat
	vtexdefault

	General Fuse Algorithm commands
	Definitions
	General commands
	Commands for Intersection Part
	bopds
	bopdsdump
	bopindex
	bopiterator
	bopinterf
	bopsp
	bopcb
	bopfin
	bopfon
	bopwho
	bopnews

	Commands for the Building Part
	bopim

	Data Exchange commands
	IGES commands
	igesread
	tplosttrim
	brepiges

	STEP commands
	stepread
	stepwrite

	General commands
	count
	data
	elabel
	entity
	enum
	estatus
	fromshape
	givecount
	givelist
	listcount
	listitems
	listtypes
	newmodel
	param
	sumcount
	tpclear
	tpdraw
	tpent
	tpstat
	xload

	Overview of XDE commands
	ReadIges
	ReadStep
	WriteIges
	WriteStep
	XFileCur
	XFileList
	XFileSet
	XFromShape

	XDE general commands
	XNewDoc
	XShow
	XStat
	XWdump
	Xdump

	XDE shape commands
	XAddComponent
	XAddShape
	XFindComponent
	XFindShape
	XGetFreeShapes
	XGetOneShape
	XGetReferredShape
	XGetShape
	XGetTopLevelShapes
	XLabelInfo
	XNewShape
	XRemoveComponent
	XRemoveShape
	XSetShape
	XUpdateAssemblies

	XDE color commands
	XAddColor
	XFindColor
	XGetAllColors
	XGetColor
	XGetObjVisibility
	XGetShapeColor
	XRemoveColor
	XSetColor
	XSetObjVisibility
	XUnsetColor

	XDE layer commands
	XAddLayer
	XFindLayer
	XGetAllLayers
	XGetLayers
	XGetOneLayer
	XIsVisible
	XRemoveAllLayers
	XRemoveLayer
	XSetLayer
	XSetVisibility
	XUnSetAllLayers
	XUnSetLayer

	XDE property commands
	XCheckProps
	XGetArea
	XGetCentroid
	XGetVolume
	XSetArea
	XSetCentroid
	XSetMaterial
	XSetVolume
	XShapeMassProps
	XShapeVolume

	Shape Healing commands
	General commands
	bsplres
	checkfclass2d
	checkoverlapedges
	comtol
	convtorevol
	directfaces
	expshape
	fixsmall
	fixsmalledges
	fixshape
	fixwgaps
	offsetcurve, offset2dcurve
	projcurve
	projpcurve
	projface
	scaleshape
	settolerance
	splitface
	statshape
	tolerance

	Conversion commands
	DT_ClosedSplit
	DT_ShapeConvert, DT_ShapeConvertRev
	DT_ShapeDivide
	DT_SplitAngle
	DT_SplitCurve
	DT_SplitCurve2d
	DT_SplitSurface
	DT_ToBspl

	Performance evaluation commands
	VDrawSphere

	Simple vector algebra and measurements
	Vector algebra commands
	vec
	2dvec
	pln
	module
	2dmodule
	norm
	2dnorm
	inverse
	2dinverse
	2dort
	distpp
	2ddistpp
	distplp
	distlp
	2ddistlp
	distppp
	2ddistppp
	barycen
	2dbarycen
	cross
	2dcross
	dot
	2ddot
	scale
	2dscale

	Measurements commands
	pnt
	pntc
	2dpntc
	pntsu
	pntcons
	drseg
	2ddrseg
	mpick
	mdist

	Inspector commands
	tinspector

	Extending Test Harness with custom commands
	Custom command implementation
	Registration of commands in Test Harness
	Creating a toolkit (library) as a plug-in
	Creation of the plug-in resource file
	Dynamic loading and activation

