
Open CASCADE Technology
7.3.0

STEP processor

May 26, 2018

CONTENTS 1

Contents

1 Introduction . 3

1.1 STEP Exchanges in Open Cascade technology . 4

1.2 STEP Interface . 4

2 Reading STEP . 5

2.1 Procedure . 5

2.2 Domain covered . 5

2.2.1 Assemblies . 5

2.2.2 Shape representations . 5

2.2.3 Topological entities . 6

2.2.4 Geometrical entities . 6

2.3 Description of the process . 6

2.3.1 Loading the STEP file . 6

2.3.2 Checking the STEP file . 6

2.3.3 Setting the translation parameters . 7

2.3.4 Performing the STEP file translation . 12

2.3.5 Getting the translation results . 13

2.3.6 Selecting STEP entities for translation . 14

2.4 Mapping STEP entities to Open CASCADE Technology shapes 15

2.4.1 Assembly structure representation entities . 15

2.4.2 Models . 17

2.4.3 Topological entities . 17

2.4.4 Geometrical entities . 18

2.5 Tolerance management . 19

2.5.1 Values used for tolerances during reading STEP . 19

2.5.2 Initial setting of tolerances in translating objects . 20

2.5.3 Transfer process . 20

2.6 Code architecture . 22

2.7 Example . 23

3 Writing STEP . 24

3.1 Procedure . 24

3.2 Domain covered . 24

3.2.1 Writing geometry and topology . 24

3.2.2 Writing assembly structures . 24

3.3 Description of the process . 24

3.3.1 Initializing the process . 24

3.3.2 Setting the translation parameters . 24

3.3.3 Performing the Open CASCADE Technology shape translation 27

(c) Open CASCADE 2018

CONTENTS 2

3.3.4 Writing the STEP file . 28

3.4 Mapping Open CASCADE Technology shapes to STEP entities 28

3.4.1 Assembly structures and product information . 28

3.4.2 Topological shapes . 29

3.4.3 Geometrical objects . 30

3.5 Tolerance management . 31

3.6 Code architecture . 32

3.6.1 Graph of calls . 32

3.7 Example . 32

4 Physical STEP file reading and writing . 34

4.1 Architecture of STEP Read and Write classes . 34

4.1.1 General principles . 34

4.1.2 Complex entities . 34

4.2 Physical file reading . 34

4.2.1 Loading a STEP file and syntactic analysis of its contents 34

4.2.2 Mapping STEP entities to arrays of strings . 34

4.2.3 Creating empty Open CASCADE Technology objects that represent STEP entities 35

4.2.4 Initializing Open CASCADE Technology objects . 35

4.2.5 Building a graph . 35

4.3 How to add a new entity in scope of the STEP processor . 35

4.4 Physical file writing . 36

4.5 How to add a new entity to write in the STEP file. 36

5 Using DRAW . 37

5.1 DRAW STEP Commands Overview . 37

5.2 Setting the interface parameters . 37

5.3 Reading a STEP file . 37

5.4 Analyzing the transferred data . 38

5.4.1 Checking file contents . 39

5.4.2 Estimating the results of reading STEP . 40

5.5 Writing a STEP file . 41

6 Reading from and writing to STEP . 43

6.1 Reading from STEP . 43

6.2 Attributes read from STEP . 44

6.3 Writing to STEP . 46

6.4 Attributes written to STEP . 47

(c) Open CASCADE 2018

1 Introduction 3

1 Introduction

STEP is more and more widely used to exchange data between various software, involved in CAD, PDM, Analysis,
etc... STEP is far more than an "exchange standard" : it provides a technology and a set of methodologies to
describe the data to exchange in a modular and upgradeable way. Regarding OCCT, this mostly applies to CAD
data but it is not a limitation, other kinds of data for specific applications can be addressed too.

Figure 1: Image imported from STEP

Open Cascade allows its users to employ STEP in the following domains:

• Exchange of data for technical applications, following the state-of-the-art definitions and rules;

• Extension of case coverage, according to specific needs or to the evolution of general business uses;

• Expertise in data architecture of an application, to get experience from STEP definitions and make easier the
mapping to them, for a better interoperability with outer world.

This manual is intended to provide technical documentation on the Open CASCADE Technology (OCCT) STEP
processor and to help Open CASCADE Technology users with the use of the STEP processor (to read and write
STEP files).

Only geometrical, topological STEP entities (shapes) and assembly structures are translated by the basic translator
described in sections 2 to 6. Data that cannot be translated on this level are also loaded from a STEP file and can
be translated later. XDE STEP translator (see section 7 Reading from and writing to XDE) translates names, colors,
layers, validation properties and other data associated with shapes and assemblies into XDE document.

File translation is performed in the programming mode, via C++ calls.

Shape Healing toolkit provides tools to heal various problems, which may be encountered in translated shapes, and
to make them valid in Open CASCADE. The Shape Healing is smoothly connected to STEP translator using the
same API, only the names of API packages change.

For testing the STEP component in DRAW Test Harness, a set of commands for reading and writing STEP files and
analysis of relevant data are provided by the TKXSDRAW plugin.

See also our E-learning & Training offerings.

(c) Open CASCADE 2018

http://www.opencascade.com/content/tutorial-learning

1.1 STEP Exchanges in Open Cascade technology 4

1.1 STEP Exchanges in Open Cascade technology

Beyond the upper level API, which is fitted for an easy end-use, the STEP exchange functions enter in the general
frame of Exchanges in Open Cascade, adapted for STEP:

• Specific packages for Data definition and checking;

• Physical Access supported by Drivers (Part 21 file access is embedded);

• Conversion to/from Open Cascade or applicative data supported by drivers (OCC-BREP and XDE ard basi-
cally provided);

• Tools for analysis, filtering, etc... including DRAW commands.

These modules share common architecture and capabilities with other exchange modules of Open Cascade, like
Shape Healing. Also, built-in Viewer and Converter (as Plugin for Netscape, Internet Explorer ..), are based on the
same technology.

In addition, Open Cascade provides tools to process models described using STEP: to reflect EXPRESS descrip-
tions, to read, write and check data, to analyze the whole models ... Their key features are:

• Modularity by sets of data types, which can be hierarchized to reflect the original modularity describing the
resources and application protocols;

• Implementation as C++ classes, providing comprehensive access to their members;

• Early binding is basically used, providing good performance, easy installation and use as well as the capability
to support non-compiled descriptions.

This provides a natural way to deal with non-supported protocols when they share common definitions, as for
geometry, which can then be exploited. The common frame, as the already supported data types, give a good
foundation to go towards new uses of STEP, either on data definition (protocols from ISO or from industrial consortia)
or on mapping with applicative data.

1.2 STEP Interface

The STEP interface reads STEP files produced in accordance with STEP Application Protocol 214 (Conformance
Class 2 both CD and DIS versions of schema) and translates them to Open CASCADE Technology models. STEP
Application Protocol 203 and some parts of AP242 are also supported.

The STEP interface also translates OCCT models to STEP files. STEP files that are produced by this interface
conform to STEP AP 203 or AP 214 (Conformance Class 2, either CD or DIS version of the schema) depending on
the user's option.

Basic interface reads and writes geometrical, topological STEP data and assembly structures.

The interface is able to translate one entity, a group of entities or a whole file.

Other kinds of data such as colors, validation properties, layers, GD&T, names and the structure of assemblies can
be read or written with the help of XDE tools: STEPCAFControl_Reader and STEPCAFControl_Writer.

To choose a translation mode when exporting to a STEP format, use STEPControl_STEPModelType.

There is a set of parameters that concern the translation and can be set before the beginning of the translation.

Please, note:

• a STEP model is a STEP file that has been loaded into memory;

• all references to shapes indicate OCCT shapes unless otherwise explicitly stated;

• a root entity is the highest level entity of any given type, i.e. an entity that is not referenced by any other one.

(c) Open CASCADE 2018

2 Reading STEP 5

2 Reading STEP

2.1 Procedure

You can translate a STEP file into an OCCT shape in the following steps:

1. load the file,

2. check file consistency,

3. set the translation parameters,

4. perform the translation,

5. fetch the results.

2.2 Domain covered

2.2.1 Assemblies

The ProSTEP Round Table Agreement Log (version July 1998), item 21, defines two alternatives for the im-
plementation of assembly structure representations: using mapped_item entities and using representation_←↩
relationship_with_transformation entities. Both these alternative representations are recognized and processed
at reading. On writing, the second alternative is always employed.

Handling of assemblies is implemented in two separate levels: firstly STEP assembly structures are translated
into OCCT shapes, and secondly the OCCT shape representing the assembly is converted into any data structure
intended for representing assemblies (for example, OCAF).

The first part of this document describes the basic STEP translator implementing translation of the first level, i.e.
translation to OCCT Shapes. On this level, the acyclic graph representing the assembly structure in a STEP file is
mapped into the structure of nested TopoDS_Compounds in Open CASCADE Technology. The (sub)assemblies
become (sub)compounds containing shapes which are the results of translating components of that (sub)assembly.
The sharing of components of assemblies is preserved as Open CASCADE Technology sharing of subshapes in
compounds.

The attributive information attached to assembly components in a STEP file (such as names and descriptions of
products, colors, layers etc.) can be translatd after the translation of the shape itself by parsing the STEP model
(loaded in memory). Several tools from the package STEPConstruct provide functionalities to read styles (colors),
validation properties, product information etc. Implementation of the second level of translation (conversion to XDE
data structure) is provided by XDE STEP translator.

2.2.2 Shape representations

Length units, plane angle units and the uncertainty value are taken from shape_representation entities. This data is
used in the translation process.

The types of STEP representation entities that are recognized are:

• advanced_brep_shape_representation

• faceted_brep_shape_representation

• manifold_surface_shape_representation

• geometrically_bounded_wireframe_shape_representation

• geometrically_bounded_surface_shape_representation

• hybrid representations (shape_representation containing models of different type)

(c) Open CASCADE 2018

2.3 Description of the process 6

2.2.3 Topological entities

The types of STEP topological entities that can be translated are:

• vertices

• edges

• loops

• faces

• shells

• solids For further information see Mapping STEP entities to Open CASCADE Technology shapes.

2.2.4 Geometrical entities

The types of STEP geometrical entities that can be translated are:

• points

• vectors

• directions

• curves

• surfaces

For further information see 2.4 Mapping STEP entities to Open CASCADE Technology shapes.

2.3 Description of the process

2.3.1 Loading the STEP file

Before performing any other operation you have to load the file with:

STEPControl_Reader reader;
IFSelect_ReturnStatus stat = reader.ReadFile(;filename.stp;);

Loading the file only memorizes the data, it does not translate it.

2.3.2 Checking the STEP file

This step is not obligatory. Check the loaded file with:

reader.PrintCheckLoad(failsonly,mode);

Error messages are displayed if there are invalid or incomplete STEP entities, giving you the information on the
cause of error.

If failsonly is true only fail messages are displayed. All messages are displayed if failsonly is false. Your analysis of
the file can be either message-oriented or entity-oriented. Choose your preference with:

IFSelect_PrintCount mode = IFSelect_xxx

Where xxx can be one of the following:

• ItemsByEntity – gives a sequential list of all messages per STEP entity,

• CountByItem – gives the number of STEP entities with their types per message

• ListByItem – gives the number of STEP entities with their types and rank numbers per message

(c) Open CASCADE 2018

2.3 Description of the process 7

2.3.3 Setting the translation parameters

The following parameters can be used to translate a STEP file into an OCCT shape.

If you give a value that is not within the range of possible values it will simply be ignored.

read.precision.mode

Defines which precision value will be used during translation (see section 2.5 below for details on precision and
tolerances).

• File (0) – the precision value is set to length_measure in uncertainty_measure_with_unit from STEP file.

• User (1) – the precision value is that of the read.precision.val parameter.

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.precision.mode");

Modify this parameter with:

if(!Interface_Static::SetIVal("read.precision.mode",1))
.. error ..

Default value is File (0).

read.precision.val:

User defined precision value. This parameter gives the precision for shape construction when the read.precision.←↩
mode parameter value is 1. By default it is 0.0001, but can be any real positive (non null) value.

This value is a basic value of tolerance in the processor. The value is in millimeters, independently of the length unit
defined in the STEP file.

Read this parameter with:

Standard_Real rp = Interface_Static::RVal("read.precision.val");

Modify this parameter with:

if(!Interface_Static::SetRVal("read.precision.val",0.01))
.. error ..

By default this value is 0.0001.

The value given to this parameter is a basic value for ShapeHealing algorithms and the processor. It does its best
to reach it. Under certain circumstances, the value you give may not be attached to all of the entities concerned
at the end of processing. STEP-to-OpenCASCADE translation does not improve the quality of the geometry in the
original STEP file. This means that the value you enter may be impossible to attach to all shapes with the given
quality of the geometry in the STEP file.

read.maxprecision.val

Defines the maximum allowed tolerance (in mm) of the shape. It should be not less than the basic value of tolerance
set in the processor (either the uncertainty from the file or read.precision.val). Actually, the maximum between
read.maxprecision.val and the basis tolerance is used to define the maximum allowed tolerance.

Read this parameter with:

Standard_Real rp = Interface_Static::RVal("read.maxprecision.val");

Modify this parameter with:

(c) Open CASCADE 2018

2.3 Description of the process 8

if(!Interface_Static::SetRVal("read.maxprecision.val",0.1))
.. error ..

Default value is 1. Note that maximum tolerance even explicitly defined by the user may be insufficient to ensure the
validity of the shape (if real geometry is of bad quality). Therefore the user is provided with an additional parameter,
which allows him to choose: either he prefers to ensure the shape validity or he rigidly sets the value of maximum
tolerance. In the first case there is a possibility that the tolerance will not have any upper limit, in the second case
the shape may be invalid.

read.maxprecision.mode:

Defines the mode of applying the maximum allowed tolerance. Its possible values are:

• 0 (Preferred) – maximum tolerance is used as a limit but sometimes it can be exceeded (currently, only for
deviation of a 3D curve and pcurves of an edge, and vertices of such edge) to ensure the shape validity,

• 1 (Forced) – maximum tolerance is used as a rigid limit, i.e. no tolerance can exceed it and if it is the case,
the tolerance is trimmed by the maximum tolerance.

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.maxprecision.mode");

Modify this parameter with:

if(!Interface_Static::SetIVal("read.maxprecision.mode",1))
.. error ..

Default value is 0 ("Preferred").

read.stdsameparameter.mode

defines the use of BRepLib::SameParameter. Its possible values are:

• 0 (Off) – BRepLib::SameParameter is not called,

• 1 (On) – BRepLib::SameParameter is called. The functionality of BRepLib::SameParameter is used through
ShapeFix_Edge::SameParameter. It ensures that the resulting edge will have the lowest tolerance taking
pcurves either unmodified from the STEP file or modified by BRepLib::SameParameter.

Read this parameter with:

Standard_Integer mv = Interface_Static::IVal("read.stdsameparameter.mode");

Modify this parameter with:

if (!Interface_Static::SetIVal ("read.stdsameparameter.mode",1))
.. error ..;

Default value is 0 (;Off;).

read.surfacecurve.mode:

a preference for the computation of curves in an entity which has both 2D and 3D representation. Each TopoDS_←↩
Edge in TopoDS_Face must have a 3D and 2D curve that references the surface.

If both 2D and 3D representation of the entity are present, the computation of these curves depends on the following
values of parameter:

• Default (0) : no preference, both curves are taken (default value),

(c) Open CASCADE 2018

2.3 Description of the process 9

• 3DUse_Preferred (3) : 3D curves are used to rebuild 2D ones.

Read this parameter with:

Standard_Integer rp = Interface_Static::IVal("read.surfacecurve.mode");

Modify this parameter with:

if(!Interface_Static::SetIVal("read.surfacecurve.mode",3))
.. error ..

Default value is (0).

read.encoderegularity.angle

This parameter is used for call to BRepLib::EncodeRegularity() function which is called for the shape read from an
IGES or a STEP file at the end of translation process. This function sets the regularity flag of the edge in the shell
when this edge is shared by two faces. This flag shows the continuity these two faces are connected with at that
edge. Read this parameter with:

Standard_Real era = Interface_Static::RVal("read.encoderegularity.angle");

Modify this parameter with:

if (!Interface_Static::SetRVal ("read.encoderegularity.angle",0.1))
.. error ..;

Default value is 0.01.

step.angleunit.mode

This parameter is obsolete (it was required in the past for STEP files with a badly encoded angle unit). It indicates
what angle units should be used when a STEP file is read: the units from file (default), or forced RADIANS or
DEGREES.

Default value is File

read.step.resource.name and read.step.sequence

These two parameters define the name of the resource file and the name of the sequence of operators (defined in
that file) for Shape Processing, which is automatically performed by the STEP translator. Shape Processing is a
user-configurable step, which is performed after translation and consists in applying a set of operators to a resulting
shape. This is a very powerful tool allowing customizing the shape and adapting it to the needs of a receiving
application. By default the sequence consists of a single operator ShapeFix – that is how Shape Healing is called
from the STEP translator.

Please find an example of the resource file for STEP (which defines parameters corresponding to the sequence
applied by default, i.e. if the resource file is not found) in the Open CASCADE Technology installation, by the path
CASROOT%/src/XSTEPResource/STEP.

In order for the STEP translator to use that file, you have to define the CSF_STEPDefaults environment variable,
which should point to the directory where the resource file resides. Note that if you change parameter read.step.←↩
resource.name, you will change the name of the resource file and the environment variable correspondingly.

Default values:

• read.step.resource.name – STEP,

• read.step.sequence – FromSTEP.

(c) Open CASCADE 2018

2.3 Description of the process 10

xstep.cascade.unit

This parameter defines units to which a shape should be converted when translated from IGES or STEP to C←↩
ASCADE. Normally it is MM; only those applications that work internally in units other than MM should use this
parameter.

Default value is MM.

read.step.product.mode:

Defines the approach used for selection of top-level STEP entities for translation, and for recognition of assembly
structures

• 1 (ON) – PRODUCT_DEFINITION entities are taken as top-level ones; assembly structure is recognized
by NEXT_ASSEMBLY_USAGE_OCCURRENCE entities. This is regular mode for reading valid STEP files
conforming to AP 214, AP203 or AP 209.

• 0 (OFF) – SHAPE_DEFINITION_REPRESENTATION entities are taken as top-level ones; assembly is recog-
nized by CONTEXT_DEPENDENT_SHAPE_REPRESENTATION entities. This is compatibility mode, which
can be used for reading legacy STEP files produced by older versions of STEP translators and having incor-
rect or incomplete product information.

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.step.product.mode");

Modify this parameter with:

if(!Interface_Static::SetIVal("read.step.product.mode",1))
.. error ..

Default value is 1 (ON).

Note that the following parameters have effect only if read.step.product.mode is ON.

read.step.product.context:

When reading AP 209 STEP files, allows selecting either only ‘design' or ‘analysis', or both types of products for
translation

• 1 (all) – translates all products;

• 2 (design) – translates only products that have PRODUCT_DEFINITION_CONTEXT with field life_cycle_←↩
stage set to ‘design';

• 3 (analysis) – translates only products associated with PRODUCT_DEFINITION_CONTEXT entity whose
field life_cycle_stage set to ‘analysis'.

Note that in AP 203 and AP214 files all products should be marked as ‘design', so if this mode is set to ‘analysis',
nothing will be read.

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.step.product.context");

Modify this parameter with:

if(!Interface_Static::SetIVal(;read.step.product.context;,1))
.. error ..

Default value is 1 (all).

(c) Open CASCADE 2018

2.3 Description of the process 11

read.step.shape.repr:

Specifies preferred type of representation of the shape of the product, in case if a STEP file contains more than one
representation (i.e. multiple PRODUCT_DEFINITION_SHAPE entities) for a single product

• 1 (All) – Translate all representations (if more than one, put in compound).

• 2 (ABSR) - Prefer ADVANCED_BREP_SHAPE_REPRESENTATION

• 3 (MSSR) – Prefer MANIFOLD_SURFACE_SHAPE_REPRESENTATION

• 4 (GBSSR) – Prefer GEOMETRICALLY_BOUNDED_SURFACE_SHAPE_REPRESENTATION

• 5 (FBSR) – Prefer FACETTED_BREP_SHAPE_REPRESENTATION

• 6 (EBWSR) – Prefer EDGE_BASED_WIREFRAME_SHAPE_REPRESENTATION

• 7 (GBWSR) – Prefer GEOMETRICALLY_BOUNDED_WIREFRAME _SHAPE_REPRESENTATION

When this option is not equal to 1, for products with multiple representations the representation having a type closest
to the selected one in this list will be translated.

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.step.shape.repr");

Modify this parameter with:

if(!Interface_Static::SetIVal("read.step.shape.repr",1))
.. error ..

Default value is 1 (All).

read.step.assembly.level:

Specifies which data should be read for the products found in the STEP file:

• 1 (All) – Translate both the assembly structure and all associated shapes. If both shape and sub-assemblies
are associated with the same product, all of them are read and put in a single compound. Note that this
situation is confusing, as semantics of such configuration is not defined clearly by the STEP standard (whether
this shape is an alternative representation of the assembly or is an addition to it), therefore warning will be
issued in such case.

• 2 (assembly) – Translate the assembly structure and shapes associated with parts only (not with sub-
assemblies).

• 3 (structure) – Translate only the assembly structure without shapes (a structure of empty compounds). This
mode can be useful as an intermediate step in applications requiring specialized processing of assembly
parts.

• 4 (shape) – Translate only shapes associated with the product, ignoring the assembly structure (if any). This
can be useful to translate only a shape associated with specific product, as a complement to assembly mode.

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.step.assembly.level");

Modify this parameter with:

if(!Interface_Static::SetIVal("read.step.assembly.level",1))
.. error ..

Default value is 1 (All).

(c) Open CASCADE 2018

2.3 Description of the process 12

read.step.shape.relationship:

Defines whether shapes associated with the main SHAPE_DEFINITION_REPRESENTATION entity of the product
via SHAPE_REPRESENTATIONSHIP_RELATION should be translated. This kind of association is used for the
representation of hybrid models (i.e. models whose shape is composed of different types of representations) in AP
203 files since 1998, but it can be also used to associate auxiliary data with the product. This parameter allows to
avoid translation of such auxiliary data.

• 1 (ON) – translate

• 0 (OFF) – do not translate

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.step.shape.relationship");

Modify this parameter with:

if(!Interface_Static::SetIVal(;read.step.shape.relationship;,1))
.. error ..

Default value is 1 (ON).

read.step.shape.aspect:

Defines whether shapes associated with the PRODUCT_DEFINITION_SHAPE entity of the product via SHAP←↩
E_ASPECT should be translated. This kind of association was used for the representation of hybrid models (i.e.
models whose shape is composed of different types of representations) in AP 203 files before 1998, but it is also
used to associate auxiliary information with the sub-shapes of the part. Though STEP translator tries to recognize
such cases correctly, this parameter may be useful to avoid unconditionally translation of shapes associated via
SHAPE_ASPECT entities.

• 1 (ON) – translate

• 0 (OFF) – do not translate

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("read.step.shape.aspect");

Modify this parameter with:

if(!Interface_Static::SetIVal(;read.step.shape.aspect;,1))
.. error ..

Default value is 1 (ON).

2.3.4 Performing the STEP file translation

Perform the translation according to what you want to translate. You can choose either root entities (all or selected
by the number of root), or select any entity by its number in the STEP file. There is a limited set of types of entities
that can be used as starting entities for translation. Only the following entities are recognized as transferable:

• product_definition

• next_assembly_usage_occurrence

• shape_definition_representation

(c) Open CASCADE 2018

2.3 Description of the process 13

• subtypes of shape_representation (only if referred representation is transferable)

• manifold_solid_brep

• brep_with_voids

• faceted_brep

• faceted_brep_and_brep_with_voids

• shell_based_surface_model

• geometric_set and geometric_curve_set

• mapped_item

• subtypes of face_surface (including advanced_face)

• subtypes of shape_representation_relationship

• context_dependent_shape_representation

The following methods are used for translation:

• Standard_Boolean ok = reader.TransferRoot(rank) – translates a root entity identified by its rank;

• Standard_Boolean ok = reader.TransferOne(rank) – translates an entity identified by its rank;

• Standard_Integer num = reader.TransferList(list) – translates a list of entities in one operation (this method
returns the number of successful translations);

• Standard_Integer NbRoots = reader.NbRootsForTransfer() and Standard_Integer num = reader.Transfer←↩
Roots() – translate all transferable roots.

2.3.5 Getting the translation results

Each successful translation operation outputs one shape. A series of translations gives a set of shapes.

Each time you invoke TransferOne(), TransferRoot() or TransferList(), their results are accumulated and the counter
of results increases. You can clear the results with:

reader.ClearShapes();

between two translation operations, if you do not, the results from the next translation will be added to the accumu-
lation.

TransferRoots() operations automatically clear all existing results before they start.

• Standard_Integer num = reader.NbShapes() – gets the number of shapes recorded in the result;

• TopoDS_Shape shape = reader.Shape(rank) – gets the result identified by its rank, where rank is an integer
between 1 and NbShapes;

• TopoDS_Shape shape = reader.Shape() – gets the first result of translation;

• TopoDS_Shape shape = reader.OneShape() – gets all results in a single shape, which is:

– a null shape if there are no results,

– in case of a single result, a shape that is specific to that result,

– a compound that lists the results if there are several results.

Clearing the accumulation of results

If several individual translations follow each other, the results give a list that can be purged with reader.Clear←↩
Shapes(), which erases the existing results.

(c) Open CASCADE 2018

2.3 Description of the process 14

Checking that translation was correctly performed

Each time you invoke Transfer or TransferRoots(), you can display the related messages with the help of:

reader.PrintCheckTransfer(failsonly,mode);

This check concerns the last invocation of Transfer or TransferRoots() only.

2.3.6 Selecting STEP entities for translation

Selection possibilities

There are three selection possibilities. You can select:

• the whole file,

• a list of entities,

• one entity.

The whole file

Transferring the whole file means transferring all root entities. The number of roots can be evaluated when the file
is loaded:

Standard_Integer NbRoots = reader.NbRootsForTransfer();
Standard_Integer num = reader.TransferRoots();

List of entities

A list of entities can be formed by invoking STEP214Control_Reader::GiveList (this is a method of the parent class).

Here is a simple example of how a list is translated:

Handle(TColStd_HSequenceOfTransient) list = reader.GiveList();

The result is a TColStd_HSequenceOfTransient. You can either translate a list entity by entity or all at once. An
entity-by-entity operation lets you check each individual entity translated.

Translating a whole list in one operation

Standard_Integer nbtrans = reader.TransferList (list);

nbtrans gives the number of items in the list that produced a shape.

Translating a list entity by entity:

Standard_Integer i,nb = list->Length();
for (i = 1; i <= nb; i ++) {
Handle(Standard_Transient) ent = list->Value(i);
Standard_Boolean OK = reader.TransferEntity (ent);
}

Selections

There is a number of predefined operators that can be used. They are:

• step214-placed-items – selects all mapped_items or context_depended_shape_representations.

• step214-shape-def-repr – selects all shape_definition_representations.

• step214-shape-repr – selects all shape_representations.

(c) Open CASCADE 2018

2.4 Mapping STEP entities to Open CASCADE Technology shapes 15

• step214-type(<entity_type>) – selects all entities of a given type

• step214-faces – selects all faces_surface, advanced_face entities and the surface entity or any sub type if
these entities are not shared by any face entity or shared by geometric_set entity.

• step214-derived(<entity_type>) – selects entities of a given type or any subtype.

• step214-GS-curves – selects all curve entities or any subtype except the composite_curve if these entities
are shared by the geometric_set entity.

• step214-assembly – selects all mapped_items or context_depended_shape_representations involved into the
assembly structure.

• xst-model-all – selects all entities.

• xst-model-roots – selects all roots.

• xst-shared + <selection> – selects all entities shared by at least one entity selected by selection.

• xst-sharing + <selection> – selects all entities sharing at least one entity selected by selection.

• xst-transferrable-all – selects all transferable entities.

• xst-transferrable-roots – selects all translatable roots. Cumulative lists can be used as well.

Single entities

You can select an entity either by its rank or by its handle (an entity's handle can be obtained by invoking the
StepData_StepModel::Entity function).

Selection by rank

Use method StepData_StepModel::NextNumberForLabel to find its rank with the following:

Standard_CString label = ‘#...’;
StepData_StepModel model = reader.StepModel();
rank = model->NextNumberForLabe(label, 0, Standard_False);

Translate an entity specified by its rank:

Standard_Boolean ok = reader.Transfer (rank);

Direct selection of an entity

ent is the entity. The argument is a Handle(Standard_Transient).

Standard_Boolean ok = reader.TransferEntity (ent);

2.4 Mapping STEP entities to Open CASCADE Technology shapes

Tables given in this paragraph show the mapping of STEP entities to OCCT objects. Only topological and geomet-
rical STEP entities and entities defining assembly structures are described in this paragraph. For a full list of STEP
entities please refer to Appendix A.

2.4.1 Assembly structure representation entities

Not all entities defining the assembly structure in the STEP file are translated to OCCT shapes, but they are used
to identify the relationships between assemblies and their components. Since the graph of ‘natural' dependencies
of entities based on direct references between them does not include the references from assemblies to their
components, these dependencies are introduced in addition to the former ones. This is made basing on the analysis
of the following entities describing the structure of the assembly.

(c) Open CASCADE 2018

2.4 Mapping STEP entities to Open CASCADE Technology shapes 16

STEP entity type CASCADE shape Comments

product_definition A TopoDS_Compound for assem-
blies, a CASCADE shape corre-
sponding to the component type of
for components,

Each assembly or component has
its own product_definition. It is
used as a starting point for transla-
tion when read.step.product.mode
is ON.

product_definition_shape This entity provides a link be-
tween product_definition and
corresponding shape_definition←↩
_representation, or between
next_assembly_usage_occurence
and corresponding context_←↩
dependent_shape_representation.

shape_definition_representation A TopoDS_Compound for assem-
blies, a CASCADE shape corre-
sponding to the component type for
components.

Each assembly or component
has its own shape_definition←↩
_representation. The graph of
dependencies is modified in such
a way that shape_definition_←↩
representations of all components
of the assembly are referred by the
shape_definition_representation of
the assembly.

next_assembly_usage_occurence This entity defines a relationship
between the assembly and its
component. It is used to introduce
(in the dependencies graph) the
links between shape_definition_←↩
representation of the assembly and
shape_definition_representations
and context_dependent_shape←↩
_representations of all its compo-
nents.

mapped_item TopoDS_Shape This entity defines a mapping of
the assembly component into the
shape_representation of the as-
sembly. The result of translation is
a CASCADE shape translated from
the component, to which transfor-
mation defined by the mapped_←↩
item is applied.

context_dependent_shape_←↩
representation

TopoDS_Shape This entity is associated with
the next_assembly_usage_←↩
occurence entity and defines a
placement of the component in
the assembly. The graph of de-
pendencies is modified so that
each context_dependent_shape←↩
_representation is referred by
shape_definition_representation of
the corresponding assembly.

shape_representation_←↩
relationship_with_transformation

This entity is associated with
context_dependent_shape_←↩
representation and defines a
transformation necessary to apply
to the component in order to locate
it in its place in the assembly.

(c) Open CASCADE 2018

2.4 Mapping STEP entities to Open CASCADE Technology shapes 17

STEP entity type CASCADE shape Comments
item_defined_transformation This entity defines a transforma-

tion operator used by shape_←↩
representation_relationship_with←↩
_transformation or mapped_item
entity

cartesian_transformation_operator This entity defines a transforma-
tion operator used by shape_←↩
representation_relationship_with←↩
_transformation or mapped_item
entity

2.4.2 Models

STEP entity type CASCADE shape Comments

Solid Models
brep_with_voids TopoDS_Solid

faceted_brep TopoDS_Solid

manifold_solid_brep TopoDS_Solid

Surface Models
shell_based_surface_model TopoDS_Compound shell_based_surface_model is translated into one or

more TopoDS_Shell grouped in a TopoDS_Compound

geometric_set TopoDS_Compound TopoDS_Compound contains only TopoDS_Faces,
TopoDS_Wires, TopoDS_Edges and/or TopoDS_←↩
Vertices.

Wireframe Models
geometric_curve_set TopoDS_Compound TopoDS_Compound contains only TopoDS_Wires,

TopoDS_Edges and/or TopoDS_Vertices.

2.4.3 Topological entities

Topology STEP entity type CASCADE shape Comments

Vertices vertex_point TopoDS_Vertex

Edges oriented_edge TopoDS_Edge

edge_curve TopoDS_Edge

Loops face_bound TopoDS_Wire

face_outer_bound TopoDS_Wire

edge_loop TopoDS_Wire

poly_loop TopoDS_Wire Each segment of poly_loop is translated into
TopoDS_Edge with support of Geom_Line

vertex_loop TopoDS_Wire Resulting TopoDS_Wire contains only one degen-
erated TopoDS_Edge

Faces face_surface TopoDS_Face

advanced_face TopoDS_Face

Shells connected_face_set TopoDS_Shell

oriented_closed_shell TopoDS_Shell

closed_shell TopoDS_Shell

open_shell TopoDS_Shell

(c) Open CASCADE 2018

2.4 Mapping STEP entities to Open CASCADE Technology shapes 18

2.4.4 Geometrical entities

3D STEP entities are translated into geometrical objects from the Geom package while 2D entities are translated
into objects from the Geom2d package.

Geometry STEP entity type CASCADE object Comments

Points cartesian_point Geom_CartesianPoint,
Geom2d_CartesianPoint

Directions direction Geom_Direction, Geom2d_←↩
Direction

Vectors vector Geom_VectorWithMagnitude,
Geom2d_VectorWith←↩
Magnitude

Placements axis1_placement Geom_Axis1Placement

axis2_placement_2d Geom2d_AxisPlacement

axis2_placement_3d Geom_Axis2Placement

Curves circle Geom_Circle, Geom2d_←↩
Circle, Geom2d_Bspline←↩
Curve

Circle is translated into
Geom2d_BSplineCurve when
it references the surface of
revolution (spherical surface,
conical surface, etc.)

ellipse Geom_Ellipse, Geom2d_←↩
Ellipse, Geom2d_Bspline←↩
Curve

Ellipse is translated into
Geom2d_BSplineCurve when
it references the surface of
revolution (spherical surface,
conical surface, etc.)

hyperbola Geom_Hyperbola, Geom2d←↩
_Hyperbola

line Geom_Line, Geom2d_Line
parabola Geom_Parabola, Geom2d_←↩

Parabola
pcurve Geom2d_Curve Pcurve in edge

curve_replica Geom_Curve or Geom2d_←↩
Curve

Depending on the type of the
base curve

offset_curve_3d Geom_OffsetCurve
trimmed_curve Geom_TrimmedCurve or

Geom2d_BsplineCurve
Only trimmed_curves trimmed
by parameters are translated.
All trimmed_curves are con-
verted to Geom2d_BSpline←↩
Curve.

b_spline_curve Geom_BsplineCurve or
Geom2d_BsplineCurve

b_spline_curve_with_knots Geom_BsplineCurve or
Geom2d_BsplineCurve

bezier_curve Geom_BsplineCurve or
Geom2d_BsplineCurve

rational_b_spline_curve Geom_BsplineCurve or
Geom2d_BsplineCurve

uniform_curve Geom_BsplineCurve or
Geom2d_BsplineCurve

quasi_ uniform_curve Geom_BsplineCurve or
Geom2d_BsplineCurve

surface_curve TopoDS_Edge surface_curve defines geo-
metrical support of an edge
and its pcurves.

(c) Open CASCADE 2018

2.5 Tolerance management 19

Geometry STEP entity type CASCADE object Comments
seam_curve TopoDS_Edge The same as surface_curve

composite_curve_segment TopoDS_Edge as a segment of composite_←↩
curve

composite_curve TopoDS_Wire

composite_curve_on_surface TopoDS_Wire

boundary_curve TopoDS_Wire

Surfaces b_spline_surface Geom_BsplineSurface

b_spline_surface_with_knots Geom_BsplineSurface

bezier_surface Geom_BSplineSurface

conical_surface Geom_ConicalSurface
cylindrical_surface Geom_CylindricalSurface

offset_surface Geom_OffsetSurface
surface_replica Geom_Surface Depending on the type of ba-

sis surface
plane Geom_Plane

rational_b_spline_surface Geom_BSplineSurface

rectangular_trimmed_surface Geom_Rectangular←↩
TrimmedSurface

spherical_surface Geom_SphericalSurface

surface_of_linear_extrusion Geom_SurfaceOfLinear←↩
Extrusion

surface_of_revolution Geom_SurfaceOfRevolution
toroidal_surface Geom_ToroidalSurface
degenerate_toroidal_surface Geom_ToroidalSurface

uniform_surface Geom_BSplineSurface

quasi_uniform_surface Geom_BSplineSurface

rectangular_composite_←↩
surface

TopoDS_Compound Contains TopoDS_Faces

curve_bounded_surface TopoDS_Face

2.5 Tolerance management

2.5.1 Values used for tolerances during reading STEP

During the STEP to OCCT translation several parameters are used as tolerances and precisions for different algo-
rithms. Some of them are computed from other tolerances using specific functions.

3D (spatial) tolerance

• Package method Precision::Confusion() Value is 10-7. It is used as the minimal distance between points,
which are considered to be distinct.

• Uncertainty parameter is attached to each shape_representation entity in a STEP file and defined as length←↩
_measure in uncertainty_measure_with_unit. It is used as a fundamental value of precision during translation.

• User-defined variable read.precision.val is used instead of uncertainty from a STEP file when parameter
read.precision.mode is 1 (User).

2D (parametric) tolerances

• Package method Precision::PConfusion() is a value of 0.01∗Precision::Confusion(). It is used to compare
parametric bounds of curves.

• Methods UResolution and VResolution (tolerance3d) of the class GeomAdaptor_Surface or BRepAdaptor←↩
_Surface return tolerance in parametric space of a surface computed from 3d tolerance. When one tolerance

(c) Open CASCADE 2018

2.5 Tolerance management 20

value is to be used for both U and V parametric directions, the maximum or the minimum value of UResolution
and VResolution is used.

• Methods Resolution (tolerance3d) of the class GeomAdaptor_Curve or BRepAdaptor_Curve return tolerance
in parametric space of a curve computed from 3d tolerance.

2.5.2 Initial setting of tolerances in translating objects

In the STEP processor, the basic value of tolerance is set in method STEPControl_ActorRead::Transfer() to either
value of uncertainty in shape_representation in STEP file (if parameter read.precision.mode is 0), or to a value of
parameter read.precision.val (if read.precision.mode is 1 or if the uncertainty is not attached to the current entity in
the STEP file).

Translation starts from one entity translated as a root. STEPControl_ActorRead::Transfer(), function which performs
the translation creates an object of the type StepToTopoDS_Builder, which is intended to translate topology.

This object gets the initial tolerance value that is equal to read.precision.val or the uncertainty from shape_←↩
representation. During the translation of the entity, new objects of types StepToTopoDS_Translate... are created for
translating sub-entities. All of them use the same tolerances as a StepToTopoDS_Builder object.

2.5.3 Transfer process

Evolution of shape tolerances during transfer

Let us follow the evolution of tolerances during the translation of STEP entities into an OCCT shape.

If the starting STEP entity is a geometric_curve_set all the edges and vertices are constructed with Precision::←↩
Confusion().

If the starting STEP entity is not a geometric_curve_set the sub-shapes of the resulting shape have the following
tolerance:

• all the faces are constructed with Precision::Confusion(),

• edges are constructed with Precision::Confusion(). It can be modified later by:

• ShapeFix::SameParameter() – the tolerance of edge shows real deviation of the 3D curve and pcurves.

• ShapeFix_Wire::FixSelfIntersection() if a pcurve of a self-intersecting edge is modified.

• vertices are constructed with Precision::Confusion(). It can be modified later by: StepToTopoDS_←↩
TranslateEdge ShapeFix::SameParameter() ShapeFix_Wire::FixSelfIntersection() ShapeFix_Wire::Fix←↩
Lacking() ShapeFix_Wire::Connected()

So, the final tolerance of sub-shapes shows the real local geometry of shapes (distance between vertices of adjacent
edges, deviation of a 3D curve of an edge and its parametric curves and so on) and may be less or greater than the
basic value of tolerance in the STEP processor.

Translating into Geometry

Geometrical entities are translated by classes StepToGeom_Make... Methods of these classes translate STEP
geometrical entities into OCCT geometrical objects. Since these objects are not BRep objects, they do not have
tolerances. Tolerance is used only as precision for detecting bad cases (such as points coincidence).

Translating into Topology

STEP topological entities are translated into OCCT shapes by use of classes from package StepToTopoDS.

Although in a STEP file the uncertainty value is assigned to shape_representation entities and this value is applied
to all entities in this shape_representation, OCCT shapes are produced with different tolerances. As a rule, updating
the tolerance is fulfilled according to the local geometry of shapes (distance between vertices of adjacent edges,

(c) Open CASCADE 2018

2.5 Tolerance management 21

deviation of edge's 3D curve and its parametric curves and so on) and may be either less or greater than the
uncertainty value assigned to the entity.

The following default tolerances are used when creating shapes and how they are updated during translation.

• StepToTopoDS_TranslateVertex constructs TopoDS_Vertex from a STEP vertex_point entity with Precision←↩
::Confusion().

• StepToTopoDS_TranslateVertexLoop creates degenerated TopoDS_Edge in TopoDS_Wire with tolerance
Precision::Confusion(). TopoDS_Vertex of a degenerated edge is constructed with the initial value of tol-
erance.

• StepToTopoDS_TranslateEdge constructs TopoDS_Edge only on the basis of 3D curve with Precision::←↩
Confusion(). Tolerance of the vertices can be increased up to a distance between their positions and ends of
3D curve.

• StepToTopoDS_TranslateEdgeLoop constructs TopoDS_Edges in TopoDS_Wire with help of class StepTo←↩
TopoDS_TranslateEdge. Pcurves from a STEP file are translated if they are present and read.surfacecurve.←↩
mode is 0. For each edge method ShapeFix_Edge::FixSameParameter() is called. If the resulting tolerance
of the edge is greater than the maximum value between 1.0 and 2∗Value of basis precision, then the pcurve
is recomputed. The best of the original and the recomputed pcurve is put into TopoDS_Edge. The resulting
tolerance of TopoDS_Edge is a maximal deviation of its 3D curve and its pcurve(s).

• StepToTopoDS_TranslatePolyLoop constructs TopoDS_Edges in TopoDS_Wire with help of class StepTo←↩
TopoDS_TranslateEdge. Their tolerances are not modified inside this method.

• StepToTopoDS_TranslateFace constructs TopoDS_Face with the initial value of tolerance. TopoDS_Wire on
TopoDS_Face is constructed with the help of classes StepToTopoDS_TranslatePolyLoop, StepToTopoDS_←↩
TranslateEdgeLoop or StepToTopoDS_TranslateVertexLoop.

• StepToTopoDS_TranslateShell calls StepToTopoDS_TranslateFace::Init for each face. This class does not
modify the tolerance value.

• StepToTopoDS_TranslateCompositeCurve constructs TopoDS_Edges in TopoDS_Wire with help of class B←↩
RepAPI_MakeEdge and have a tolerance 10-7. Pcurves from a STEP file are translated if they are present
and if read.surfacecurve.mode is not -3. The connection between segments of a composite curve (edges in
the wire) is provided by calling method ShapeFix_Wire::FixConnected()∗ with a precision equal to the initial
value of tolerance.

• StepToTopoDS_TranslateCurveBoundedSurface constructs TopoDS_Face with tolerance Precision::←↩
Confusion(). TopoDS_Wire on TopoDS_Face is constructed with the help of class StepToTopoDS_←↩
TranslateCompositeCurve. Missing pcurves are computed using projection algorithm with the help of method
ShapeFix_Face::FixPcurves(). For resulting face method ShapeFix::SameParameter() is called. It calls
standard BRepLib::SameParameter for each edge in each wire, which can either increase or decrease
the tolerances of the edges and vertices. SameParameter writes the tolerance corresponding to the real
deviation of pcurves from 3D curve which can be less or greater than the tolerance in a STEP file.

• StepToTopoDS_Builder a high level class. Its methods perform translation with the help of the classes listed
above. If the value of read.maxprecision.mode is set to 1 then the tolerance of subshapes of the resulting
shape is limited by 0 and read.maxprecision.val. Else this class does not change the tolerance value.

• StepToTopoDS_MakeTransformed performs a translation of mapped_item entity and indirectly uses class
StepToTopoDS_Builder. The tolerance of the resulting shape is not modified inside this method.

Healing of resulting shape in ShapeHealing component

ShapeFix_Wire::FixSelfIntersection()

This method is intended for detecting and fixing self-intersecting edges and intersections of adjacent edges in a
wire. It fixes self-intersections by cutting edges at the intersection point and/or by increasing the tolerance of the
vertex (so that the vertex comprises the point of intersection). There is a maximum tolerance that can be set by this
method transmitted as a parameter, currently is read.maxprecision.value.

When a self-intersection of one edge is found, it is fixed by one of the two methods:

(c) Open CASCADE 2018

2.6 Code architecture 22

• tolerance of the vertex of that edge which is nearest to the point of self-intersection is increased so that it
comprises both its own old position and the intersection point

• the self-intersecting loop on the pcurve is cut out and a new pcurve is constructed. This can increase the
tolerance of the edge.

The method producing a smaller tolerance is selected.

When an intersection of two adjacent edges is detected, edges are cut at that point. Tolerance of the common
vertex of these edges is increased in order to comprise both the intersection point and the old position.

This method can increase the tolerance of the vertex up to a value of read.maxprecision.value.

ShapeFix_Wire::FixLacking()

This method is intended to detect gaps between pcurves of adjacent edges (with the precision of surface U←↩
VResolution computed from tolerance of a corresponding vertex) and to fix these gaps either by increasing the
tolerance of the vertex, or by inserting a new degenerated edge (straight in parametric space).

If it is possible to compensate a gap by increasing the tolerance of the vertex to a value of less than the initial value
of tolerance, the tolerance of the vertex is increased. Else, if the vertex is placed in a degenerated point then a
degenerated edge is inserted.

ShapeFix_Wire::FixConnected()

This method is intended to force two adjacent edges in the wire to share the same vertex. This method can increase
the tolerance of the vertex. The maximal value of tolerance is read.maxprecision.value.

2.6 Code architecture

The following diagram illustrates the structure of calls in reading STEP. The highlighted classes are intended to
translate geometry

(c) Open CASCADE 2018

2.7 Example 23

Figure 2: The structure of calls in reading STEP

2.7 Example

#include <STEPControl_Reader.hxx>
#include <TopoDS_Shape.hxx>
#include <BRepTools.hxx>

Standard_Integer main()
{

STEPControl_Reader reader;
reader.ReadFile(;MyFile.stp;);

// Loads file MyFile.stp
Standard_Integer NbRoots = reader.NbRootsForTransfer();

// gets the number of transferable roots
cout;Number of roots in STEP file: ; NbRootsendl;

Standard_Integer NbTrans = reader.TransferRoots();
// translates all transferable roots, and returns the number of //successful translations
cout;STEP roots transferred: ; NbTransendl;
cout;Number of resulting shapes is: ;reader.NbShapes()endl;

TopoDS_Shape result = reader.OneShape();
// obtain the results of translation in one OCCT shape

. . .

}

(c) Open CASCADE 2018

3 Writing STEP 24

3 Writing STEP

3.1 Procedure

You can translate OCCT shapes into STEP entities in the following steps: 1.initialize the process, 2.set the transla-
tion parameters, 3.perform the shape translation, 4.write the output file.

You can translate several shapes before writing a file. All these translations output a separate shape_representation
entity in STEP file.

The user-defined option (parameter write.step.schema) is provided to define which version of schema (AP214 CD
or DIS, or AP203) is used for the output STEP file.

3.2 Domain covered

3.2.1 Writing geometry and topology

There are two families of OCCT objects that can be translated:

• geometrical objects,

• topological shapes.

3.2.2 Writing assembly structures

The shapes organized in a structure of nested compounds can be translated either as simple compound shapes, or
into the assembly structure, depending on the parameter write.step.assembly, which is described below.

The assembly structure placed in the produced STEP file corresponds to the structure described in the ProST←↩
EP Agreement Log (item 21) as the second alternative (assembly structure through representation_relationship /
item_defined_transformation). To represent an assembly it uses entities of the representation_relationship_with←↩
_transformation type. Transformation operators used for locating assembly components are represented by item←↩
_defined_transformation entities. If mode write.step.assembly is set to the values ON or Auto then an OCC shape
consisting of nested compounds will be written as an assembly, otherwise it will be written as separate solids.

Please see also Mapping OCCT shapes to STEP entities.

3.3 Description of the process

3.3.1 Initializing the process

Before performing any other operation you have to create a writer object:

STEPControl_Writer writer;

3.3.2 Setting the translation parameters

The following parameters are used for the OCCT-to-STEP translation.

write.precision.mode

writes the precision value.

• Least (-1) : the uncertainty value is set to the minimum tolerance of an OCCT shape

• Average (0) : the uncertainty value is set to the average tolerance of an OCCT shape.

• Greatest (1) : the uncertainty value is set to the maximum tolerance of an OCCT shape

(c) Open CASCADE 2018

3.3 Description of the process 25

• Session (2) : the uncertainty value is that of the write.precision.val parameter.

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("write.precision.mode"); Modify this parameter with:

if(!Interface_Static::SetIVal("write.precision.mode",1))
.. error ..

Default value is 0.

write.precision.val

a user-defined precision value. This parameter gives the uncertainty for STEP entities constructed from OCCT
shapes when the write.precision.mode parameter value is 1.

• 0.0001: default

• any real positive (non null) value.

This value is stored in shape_representation in a STEP file as an uncertainty.

Read this parameter with:

Standard_Real rp = Interface_Static::RVal("write.precision.val");

Modify this parameter with:

if(!Interface_Static::SetRVal("write.precision.val",0.01))
.. error ..

Default value is 0.0001.

write.step.assembly

writing assembly mode.

• 0 (Off) : (default) writes STEP files without assemblies.

• 1 (On) : writes all shapes in the form of STEP assemblies.

• 2 (Auto) : writes shapes having a structure of (possibly nested) TopoDS_Compounds in the form of STEP
assemblies, single shapes are written without assembly structures.

Read this parameter with:

Standard_Integer rp = Interface_Static::IVal("write.step.assembly");

Modify this parameter with:

if(!Interface_Static::SetIVal("write.step.assembly",1))
.. error ..

Default value is 0.

write.step.schema

defines the version of schema used for the output STEP file:

• 1 or AP214CD (default): AP214, CD version (dated 26 November 1996),

(c) Open CASCADE 2018

3.3 Description of the process 26

• 2 or AP214DIS: AP214, DIS version (dated 15 September 1998).

• 3 or AP203: AP203, possibly with modular extensions (depending on data written to a file).

• 4 or AP214IS: AP214, IS version (dated 2002)

• 5 or AP242DIS: AP242, DIS version.

Read this parameter with:

TCollection_AsciiString schema = Interface_Static::CVal("write.step.schema");

Modify this parameter with:

if(!Interface_Static::SetCVal("write.step.schema","DIS"))
.. error ..

Default value is 1 (;CD;). For the parameter write.step.schema to take effect, method STEPControl_Writer::Model(←↩
Standard_True) should be called after changing this parameter (corresponding command in DRAW is newmodel).

write.step.product.name

Defines the text string that will be used for field ‘name' of PRODUCT entities written to the STEP file.

Default value: OCCT STEP translator (current OCCT version number).

write.surfacecurve.mode

This parameter indicates whether parametric curves (curves in parametric space of surface) should be written into
the STEP file. This parameter can be set to Off in order to minimize the size of the resulting STEP file.

• Off (0) : writes STEP files without pcurves. This mode decreases the size of the resulting STEP file .

• On (1) : (default) writes pcurves to STEP file

Read this parameter with:

Standard_Integer wp = Interface_Static::IVal("write.surfacecurve.mode");

Modify this parameter with:

if(!Interface_Static::SetIVal("write.surfacecurve.mode",1))
.. error ..

Default value is On.

write.step.unit

Defines a unit in which the STEP file should be written. If set to unit other than MM, the model is converted to these
units during the translation.

Default value is MM.

write.step.resource.name and write.step.sequence

These two parameters define the name of the resource file and the name of the sequence of operators (defined
in that file) for Shape Processing, which is automatically performed by the STEP translator before translating a
shape to a STEP file. Shape Processing is a user-configurable step, which is performed before the translation and
consists in applying a set of operators to a resulting shape. This is a very powerful tool allowing customizing the
shape and adapting it to the needs of a receiving application. By default the sequence consists of two operators←↩
: SplitCommonVertex and DirectFaces, which convert some geometry and topological constructs valid in Open
CASCADE Technology but not in STEP to equivalent definitions conforming to STEP format.

See description of parameter read.step.resource.name above for more details on using resource files.

Default values:

(c) Open CASCADE 2018

3.3 Description of the process 27

• read.step.resource.name – STEP,

• read.step.sequence – ToSTEP.

write.step.vertex.mode

This parameter indicates which of free vertices writing mode is switch on.

• 0 (One Compound) : (default) All free vertices are united into one compound and exported in one SHAPE
DEFINITION REPRESENTATION (vertex name and style are lost).

• 1 (Single Vertex) : Each vertex exported in its own SHAPE DEFINITION REPRESENTATION (vertex name
and style are not lost, but size of STEP file increases).

Read this parameter with:

Standard_Integer ic = Interface_Static::IVal("write.step.vertex.mode");

Modify this parameter with:

if(!Interface_Static::SetIVal("write.step.vertex.mode",1))
.. error ..

Default value is 0.

3.3.3 Performing the Open CASCADE Technology shape translation

An OCCT shape can be translated to STEP using one of the following models (shape_representations):

• manifold_solid_brep (advanced_brep_shape_representation)

• brep_with_voids (advanced_brep_shape_representation)

• faceted_brep (faceted_brep_shape_representation)

• shell_based_surface_model (manifold_surface_shape_representation)

• geometric_curve_set (geometrically_bounded_wireframe_shape_representation)

The enumeration STEPControl_StepModelType is intended to define a particular transferring model. The following
values of enumeration are allowed:

• STEPControl_AsIs Translator selects the resulting representation automatically, according to the type of C←↩
ASCADE shape to translate it in its highest possible model;

• STEPControl_ManifoldSolidBrep resulting entity is manifold_solid_brep or brep_with_voids

• STEPControl_FacetedBrep resulting entity is faceted_brep or faceted_brep_and_brep_with_voids Note that
only planar-face shapes with linear edges can be written;

• STEPControl_ShellBasedSurfaceModel resulting entity is shell_based_surface_model;

• STEPControl_GeometricCurveSet resulting entity is geometric_curve_set;

The following list shows which shapes can be translated in which mode:

• STEP214Control_AsIs – any OCCT shape

• STEP214Control_ManifoldSolidBrep – TopoDS_Solid, TopoDS_Shell, TopoDS_Compound (if it contains
TopoDS_Solids and TopoDS_Shells.

(c) Open CASCADE 2018

3.4 Mapping Open CASCADE Technology shapes to STEP entities 28

• STEP214Control_FacetedBrep – TopoDS_Solid or TopoDS_Compound containing TopoDS_Solids if all its
surfaces are Geom_Planes and all curves are Geom_Lines.

• STEP214Control_ShellBasedSurfaceModel – TopoDS_Solid, TopoDS_Shell, TopoDS_Face and TopoDS_←↩
Compound (if it contains all mentioned shapes)

• STEP214Control_GeometricCurveSet – any OCCT shape.

If TopoDS_Compound contains any other types besides the ones mentioned in the table, these sub-shapes will be
ignored.

In case if an OCCT shape cannot be translated according to its mode the result of translation is void.

STEP214Control_StepModelTope mode = STEP214Control_ManifoldSolidBrep;
IFSelect_ReturnStatus stat = writer.Transfer(shape,mode);

3.3.4 Writing the STEP file

Write the STEP file with:

IFSelect_ReturnStatus stat = writer.Write("filename.stp");

to give the file name.

3.4 Mapping Open CASCADE Technology shapes to STEP entities

Only STEP entities that have a corresponding OCCT object and mapping of assembly structures are described in
this paragraph. For a full list of STEP entities please refer to Appendix A.

3.4.1 Assembly structures and product information

The assembly structures are written to the STEP file if parameter write.step.assembly is 1 or 2. Each TopoD←↩
S_Compound is written as an assembly with subshapes of that compound being components of the assembly.
The structure of nested compounds is translated to the structure of nested assemblies. Shared subshapes are
translated into shared components of assemblies. Shapes that are not compounds are translated into subtypes of
shape_representation according to their type (see the next subchapter for details).

A set of STEP entities describing general product information is written to the STEP file together with the entities
describing the product geometry, topology and assembly structure. Most of these entities are attached to the entities
being subtypes of shape_representation, but some of them are created only one per STEP file.

The table below describes STEP entities, which are created when the assembly structure and product information
are written to the STEP file, and shows how many of these entities are created. Note that the appearance of some
of these entities depends on the version of the schema (AP214, CD, DIS or IS, or AP203).

CASCADE shape STEP entity Comments

application_protocol_definition One per STEP file, defines the application
protocol used (depends on the schema
version)

application_context One per STEP file, defines the application
generating the file (AP214 or AP203)

TopoDS_Compound shape_representation Empty shape_representation describing
the assembly. The components of that as-
sembly are written as subtypes of shape←↩
_representation and are included to the
assembly using next_assembly_usage_←↩
occurence entities.

(c) Open CASCADE 2018

3.4 Mapping Open CASCADE Technology shapes to STEP entities 29

CASCADE shape STEP entity Comments
TopoDS_Shape subtypes of shape_representation Depending on the shape type, see the ta-

bles below for mapping details

next_assembly_usage_occurence Describes the instance of component in
the assembly by referring corresponding
product_definitions. If the same compo-
nent is included in the assembly sever-
al times (for example, with different lo-
cations), several next_assembly_usage_←↩
occurences are created.

context_dependent_shape_representation Describes the placement of a compo-
nent in the assembly. One context←↩
_dependent_shape_representation corre-
sponds to each next_assembly_usage_←↩
occurence entity.

shape_representation_relationship_with←↩
_transformation

Together with the context_dependent_←↩
shape_representation describes the loca-
tion of a component in the assembly.

item_defined_transformation Defines a transformation used for the lo-
cation of a component in the assem-
bly. Is referred by shape_representation←↩
_relationship_with_transformation.

shape_definition_representation One per shape_representation.

product_definition_shape One per shape_definition_representation
and context_dependent_shape_←↩
representation

product_definition Defines a product, one per shape_←↩
definition_representation

product_definition_formation One per product_definition. All product_←↩
definition_formations in the STEP file have
unique names.

Product One per product_definition_formation. Al-
l products in the STEP file have unique
names.

product_type (CD) or product_related_←↩
product_category (DIS,IS)

One per product

Mechanical_context (CD) or product_←↩
context (DIS,IS)

One per product.

product_definition_context One per product_definition.

3.4.2 Topological shapes

CASCADE shape STEP entity Comments

TopoDS_Compound geometric_curve_set If the write mode is STEP214Control_←↩
GeometricCurveSet only 3D curves of the
edges found in TopoDS_Compound and all
its subshapes are translated

manifold_solid_brep If the write mode is STEP214Control_As←↩
Is and TopoDS_Compound consists only of
TopoDS_Solids.

shell_based_surface_model If the write mode is STEP214Control_AsIs
and TopoDS_Compound consists of Topo←↩
DS_Solids, TopoDS_Shells and TopoDS_←↩
Faces.

(c) Open CASCADE 2018

3.4 Mapping Open CASCADE Technology shapes to STEP entities 30

CASCADE shape STEP entity Comments
geometric_curve_set If the write mode is STEP214Control←↩

_AsIs and TopoDS_Compound contains
TopoDS_Wires, TopoDS_Edges, Topo←↩
DS_Vertices. If the write mode is not
STEP214Control_AsIs or STEP214←↩
Control_GeometricCurveSet, TopoDS_←↩
Solids, TopoDS_Shells and TopoDS_Faces
are translated according to this table.

TopoDS_Solid manifold_solid_brep If the write mode is STEP214Control_AsIs
or STEP214Control_ManifoldSolidBrep and
CASCADE TopoDS_Solid has no voids.

faceted_brep If the write mode is STEP214Control_←↩
FacetedBrep.

brep_with_voids If the write mode is STEP214Control_AsIs
or STEP214Control_ManifoldSolidBrep and
CASCADE TopoDS_Solid has voids.

shell_based_surface_model If the write mode is STEP214Control_←↩
ShellBasedSurfaceModel.

geometric_curve_set If the write mode is STEP214Control_←↩
GeometricCurveSet. Only 3D curves of the
edges are translated.

TopoDS_Shell in a TopoDS_Solid closed_shell If TopoDS_Shell is closed shell.

TopoDS_Shell manifold_solid_brep If the write mode is STEP214Control_←↩
ManifoldSolidBrep.

shell_based_surface_model If the write mode is STEP214Control_AsIs
or STEP214Control_ShellBasedSurface←↩
Model.

geometric_curve_set If the write mode is STEP214Control_←↩
GeometricCurveSet. Only 3D curves of the
edges are translated.

TopoDS_Face advanced_face

TopoDS_Wire in a TopoDS_Face face_bound The resulting face_bound contains poly_←↩
loop if write mode is faceted_brep or edge←↩
_loop if it is not.

TopoDS_Wire geometric_curve_set If the write mode is STEP214Control_←↩
GeometricCurveSet. Only 3D curves of the
edges are translated.

TopoDS_Edge oriented_edge

TopoDS_Vertex vertex_point

3.4.3 Geometrical objects

Geometry CASCADE object STEP entity Comments

Points Geom_CartesianPoint,
Geom2d_CartesianPoint

cartesian_point

TColgp_Array1OfPnt, T←↩
Colgp_Array1OfPnt2d

polyline

Placements Geom_Axis1Plasement,
Geom2d_AxisPlacement

axis1_placement

Geom_Axis2Placement axis2_placement_3d

Directions Geom_Direction, Geom2d_←↩
Direction

direction

(c) Open CASCADE 2018

3.5 Tolerance management 31

Geometry CASCADE object STEP entity Comments
Vectors Geom_Vector, Geom2d_←↩

Vector
vector

Curves Geom_Circle circle
Geom2d_Circle circle, rational_b_spline_←↩

curve
Geom_Ellipse Ellipse

Geom2d_Ellipse Ellipse, rational_b_spline_←↩
curve

Geom_Hyperbola, Geom2d←↩
_Hyperbola

Hyperbola

Geom_Parabola, Geom2d_←↩
Parabola

Parabola

Geom_BSplineCurve b_spline_curve_with_knots or
rational_b_spline_curve

rational_b_spline_curve is
produced if Geom_Bspline←↩
Curve is a rational BSpline

Geom2d_BSplineCurve b_spline_curve_with_knots or
rational_b_spline_curve

rational_b_spline_curve is
produced if Geom2d_←↩
BsplineCurve is a rational
BSpline

Geom_BezierCurve b_spline_curve_with_knots

Geom_Line or Geom2d_Line Line
Surfaces Geom_Plane Plane

Geom_OffsetSurface offset_surface
Geom_ConicalSurface conical_surface
Geom_CylindricalSurface cylindrical_surface

Geom_OffsetSurface offset_surface
Geom_Rectangular←↩
TrimmedSurface

rectangular_trimmed_surface

Geom_SphericalSurface spherical_surface

Geom_SurfaceOfLinear
Extrusion

surface_of_linear_extrusion

Geom_SurfaceOf Revolution surface_of_revolution
Geom_ToroidalSurface toroidal_surface or

degenerate_toroidal_surface
degenerate_toroidal_surface
is produced if the minor radius
is greater then the major one

Geom_BezierSurface b_spline_surface_with_knots

Geom_BsplineSurface b_spline_surface_with_knots
or rational_b_spline_surface

rational_b_spline_surface
is produced if Geom_B←↩
SplineSurface is a rational
Bspline

3.5 Tolerance management

There are four possible values for the uncertainty when writing a STEP file:

• user-defined value of the uncertainty

• minimal value of sub-shapes tolerances

• average value of sub-shapes tolerances

• maximal value of sub-shapes tolerances

The chosen value of the uncertainty is the final value that will be written into the STEP file. See parameter write.←↩
precision.mode.

(c) Open CASCADE 2018

3.6 Code architecture 32

3.6 Code architecture

3.6.1 Graph of calls

The following diagram illustrates the structure of calls in writing STEP. The highlighted classes are intended to
translate geometry.

Figure 3: The structure of calls in writing STEP

3.7 Example

#include <STEPControl.hxx>
#include <STEPControl_Writer.hxx>
#include <TopoDS_Shape.hxx>
#include <BRepTools.hxx>
#include <BRep_Builder.hxx>

Standard_Integer main()
{
TopoDS_Solid source;
. . .

(c) Open CASCADE 2018

3.7 Example 33

STEPControl_Writer writer;
writer.Transfer(source, STEPControl_ManifoldSolidBrep);

// Translates TopoDS_Shape into manifold_solid_brep entity
writer.Write(;Output.stp;);
// writes the resulting entity in the STEP file

}

(c) Open CASCADE 2018

4 Physical STEP file reading and writing 34

4 Physical STEP file reading and writing

4.1 Architecture of STEP Read and Write classes

4.1.1 General principles

To perform data loading from a STEP file and to translate this data it is necessary to create correspondence
between the EXPRESS schema and the structure of the classes. There are two possibilities to organize such
correspondence: the so-called early binding and late binding.

• Late binding means that the processor works with a description of the schema. The processor builds a
dictionary of entities and can recognize and read any entity that is described in the schema. To change the
behavior and the scope of processor based on late binding it is enough to change the description of the
schema. However, this binding has some disadvantages (for example low speed of reading process).

• In case of early binding, the structure of the classes is created beforehand with the help of a specific automatic
tool or manually. If the processor finds an entity that is not found in this schema, it will simply be ignored. The
processor calls constructors of appropriate classes and their read methods. To add a new type in the scope
of the processor it is necessary to create a class corresponding to the new entity.

The STEP processor is based on early binding principles. It means that specific classes for each EXPRESS type
have been created with the help of an automatic tool from the EXPRESS schema. There are two classes for
each EXPRESS type. The first class (named the representing class) represents the STEP entity in memory. The
second one (RW-class) is intended to perform the initialization of the representing class and to output data to an
intermediate structure to be written in a STEP file.

4.1.2 Complex entities

EXPRESS schema allows multiple inheritance. Entities that are built on the basis of multiple inheritance are called
complex entities. EXPRESS enables any type of complex entities that can be inherited from any EXPRESS type.
In the manner of early binding it is not possible to create a C++ class for any possible complex type. Thus, only
widespread complex entities have corresponding representing classes and RW-classes that are created manually
beforehand.

4.2 Physical file reading

Physical file reading consists of the following steps: 1.Loading a STEP file and syntactic analysis of its contents
2.Mapping STEP entities to the array of strings 3.Creating empty OCCT objects representing STEP entities 4.←↩
Initializing OCCT objects 5.Building a references graph

4.2.1 Loading a STEP file and syntactic analysis of its contents

In the first phase, a STEP file is syntactically checked and loaded in memory as a sequence of strings.

Syntactic check is performed on the basis of rules defined in step.lex and step.yacc files. Files step.lex and step.yacc
are located in the StepFile nocdlpack development unit. These files describe text encoding of STEP data structure
(for additional information see ISO 10303 Part 21). The step.lex file describes the lexical structure of the STEP file.
It describes identifiers, numbers, delimiters, etc. The step.yacc file describes the syntactic structure of the file, such
as entities, parameters, and headers.

These files have been created only once and need to be updated only when norm ISO 10303-21 is changed.

4.2.2 Mapping STEP entities to arrays of strings

For each entity specified by its rank number the arrays storing its identifier, STEP type and parameters are filled.

(c) Open CASCADE 2018

4.3 How to add a new entity in scope of the STEP processor 35

4.2.3 Creating empty Open CASCADE Technology objects that represent STEP entities

For each STEP entity an empty OCCT object representing this entity is created. A map of correspondence between
entity rank and OCCT object is created and filled out. If a STEP entity is not recognized by the STEP processor
then the StepData_UndefinedEntity object is created.

4.2.4 Initializing Open CASCADE Technology objects

Each OCCT object (including StepData_UndefinedEntity) is initialized by its parameters with the help of the appro-
priate RW-class. If an entity has another entity as its parameter, the object that represents the latter entity will be
initialized immediately. All initialized objects are put into a special map to avoid repeated initialization.

4.2.5 Building a graph

The final phase is building a graph of references between entities. For each entity its RW-class is used to find
entities referenced by this entity. Back references are built on the basis of direct references. In addition to explicit
references defined in the STEP entities some additional (implicit) references are created for entities representing
assembly structures (links from assemblies to their components).

4.3 How to add a new entity in scope of the STEP processor

If it is necessary to read and translate a new entity by the STEP processor the Reader and Actor scope should be
enhanced. Note that some actions to be made for adding a new type are different for simple and complex types.
The following steps should be taken:

• Create a class representing a new entity. This can be Stepxxx_NewEntity class where xxx can be one of the
following:

– Basic

– Geom

– Shape

– Visual

– Repr

– AP214

– AP203

– AP242

Each field of a STEP entity should be represented by a corresponding field of this class. The class should have
methods for initializing, setting and obtaining fields and it should also have the default constructor.

• Create the RWStepxxx_RWNewEntity class with a default constructor and methods ReadStep(), WriteStep()
and if the entity references other entities, then method Share().

• Update file StepAP214_Protocol.cxx. In the constructor StepAP214_Protocol::StepAP214_Protocol() add the
new type to the map of registered types and associate the unique integer identifier with this type.

• Update file RWStepAP214_ReadWriteModule.cxx. The changes should be the following:

– For simple types:

* Add a static object of class TCollection_AsciiString with name Reco_NewEntity and initialize it with
a string containing the STEP type.

* In constructor WStepAP214_ReadWriteModule::RWStepAP214_ReadWriteModule() add this ob-
ject onto the list with the unique integer identifier of the new entity type.

(c) Open CASCADE 2018

4.4 Physical file writing 36

* In function RWStepAP214_ReadWriteModule::StepType() add a new C++ case operator for this
identifier.

– For complex types:

* In the method RWStepAP214_ReadWriteModule::CaseStep() add a code for recognition the new
entity type returning its unique integer identifier.

* In the method RWStepAP214_ReadWriteModule::IsComplex() return True for this type.

* In the method RWStepAP214_ReadWriteModule::ComplexType() fill the list of subtypes composing
this complex type.

– For both simple and complex types:

* In function RWStepAP214_ReadWriteModule::ReadStep() add a new C++ case operator for the
new identifier and call the RWStepxxx_RWNewEntity class, method ReadStep to initialize the new
class.

• Update file RWStepAP214_GeneralModule.cxx. Add new C++ case operators to functions NewVoid() and
FillSharedCase(), and in the method CategoryNumber() add a line defining a category of the new type.

• Enhance the STEPControl_ActorRead class (methods Recognize() and Transfer()), or class(es) translating
some entities, to translate the new entity into an OCCT shape.

4.4 Physical file writing

Physical file writing consists of the following steps:

1. Building a references graph. Physical writing starts when STEP model, which was either loaded from a STEP
file or created from OCCT shape with the help of translator, is available together with corresponding graph of
references. During this step the graph of references can be recomputed.

2. Transferring data from a model to a sequence of strings. For each representing entity from the model a
corresponding RW-class is called. RW-class writes data that is contained in the representing class into an
intermediate data structure. The mentioned structure is a sequence of strings in memory.

3. Writing the sequence of strings into the file. The sequence of strings is written into the file. This is the last
phase of physical STEP writing.

4.5 How to add a new entity to write in the STEP file.

If it is necessary to write and translate an OCCT shape into a new entity by the STEP processor the Writer and
Actor scope should be enhanced.

For a description of steps, which should be taken for adding a new entity type to the STEP processor, see Physical
file reading. Then, enhance the STEPControl_ActorWrite class i.e. methods Recognize() and Transfer(), or other
classes from TopoDSToStep, to translate the OCCT shape into a new STEP entity.

(c) Open CASCADE 2018

5 Using DRAW 37

5 Using DRAW

5.1 DRAW STEP Commands Overview

TKXSDRAW toolkit provides commands for testing XSTEP interfaces interactively in the DRAW environment. It
provides an additional set of DRAW commands specific for data exchange tasks, which allows loading and writing
data files and an analysis of the resulting data structures and shapes.

This section is divided into five parts. Two of them deal with reading and writing a STEP file and are specific for the
STEP processor. The first and the forth parts describe some general tools for setting parameters and analyzing the
data. Most of them are independent of the norm being tested. Additionally, a table of mentioned DRAW commands
is provided.

In the description of commands, square brackets ([]) are used to indicate optional parameters. Parameters given
in the angle brackets (<>) and sharps (#) are to be substituted by an appropriate value. When several exclusive
variants are possible, a vertical dash (|) is used.

5.2 Setting the interface parameters

A set of parameters for importing and exporting STEP data is defined in the XSTEP resource file. In XSDRAW,
these parameters can be viewed or changed using the command

Draw:> param [<parameter_name> [<value>]]

Command param with no arguments gives a list of all parameters with their values. When the argument parameter←↩
_name is specified, information about this parameter is printed (current value and short description).

The third argument is used to set a new value of the given parameter. The result of the setting is printed immediately.

During all interface operations, the protocol of the process (fail and warning messages, mapping of loaded entities
into OCCT shapes etc.) can be output to the trace file. Two parameters are defined in the DRAW session: trace
level (integer value from 0 to 9, default is 0), and trace file (default is standard output).

Command xtrace is intended to view and change these parameters:

• Draw:> xtrace – prints current settings (e.g.: ‘Level=1 - Standard Output');

• Draw:> xtrace # – sets trace level to the value #;

• Draw:> xtrace tracefile.log – sets the trace file as tracefile.log;

• Draw:> xtrace. – directs all messages to the standard output.

5.3 Reading a STEP file

For a description of parameters used in reading a STEP file refer to Setting the translation parameters section.

For reading a STEP file, the following parameters are defined (see above, the command ∗param∗):

Description Name Values Meaning

Precision for input entities read.precision.mode 0 or 1 If 0 (File), precision of the input STEP file
will be used for the loaded shapes; If 1 (Ses-
sion), the following parameter will be used
as the precision value.

read.precision.val real Value of precision (used if the previous pa-
rameter is 1)

Surface curves read.surfacecurve.mode 0 or 3 Defines a preferable way of representing
surface curves (2d or 3d representation). If
0, no preference.

(c) Open CASCADE 2018

5.4 Analyzing the transferred data 38

Description Name Values Meaning
Maximal tolerance read.maxprecision.mode 0 or 1 If 1, maximum tolerance is used as a rigid

limit If 0, maximum tolerance is used as a
limit but can be exceeded by some algo-
rithms.

read.maxprecision.val real Value of maximum precision

It is possible either only to load a STEP file into memory (i.e. fill the InterfaceModel with data from the file), or to
read it (i.e. load and convert all entities to OCCT shapes). Loading is done by the command

Draw:> xload <file_name>

Once the file is loaded, it is possible to investigate the structure of the loaded data. To find out how you do it, look
in the beginning of the analysis subsection. Reading a STEP file is done by the command

Draw:> stepread <file_name> <result_shape_name> [selection]

Here a dot can be used instead of a filename if the file is already loaded by xload or stepread. The optional selection
(see below for a description of selections) specifies a set of entities to be translated. If an asterisk ‘∗' is given, all
transferable roots are translated. If a selection is not given, the user is prompted to define a scope of transfer
interactively:

N Mode Description

0 End Finish transfer and exit stepread

1 root with rank 1 Transfer first root
2 root by its rank Transfer root specified by its rank

3 One entity Transfer entity with a number provided by the user

4 Selection Transfer only entities contained in selection

• root is an entity in the STEP file which is not referenced by another entities Second parameter of the stepread
command defines the name of the loaded shape.

During the STEP translation, a map of correspondence between STEP entities and OCCT shapes is created.

To get information on the result of translation of a given STEP entity use the command

Draw:> tpent #*.

To create an OCCT shape, corresponding to a STEP entity, use the command

Draw:> tpdraw #*.

To get the number of a STEP entity, corresponding to an OCCT shape, use the command

Draw:> fromshape <shape_name>.

To clear the map of correspondences between STEP entities and OCCT shapes use the command

Draw:> tpclear.

5.4 Analyzing the transferred data

The procedure of analysis of data import can be divided into two stages:

1. to check the file contents,

2. to estimate the translation results (conversion and validated ratios).

(c) Open CASCADE 2018

5.4 Analyzing the transferred data 39

5.4.1 Checking file contents

General statistics on the loaded data can be obtained by using the command

Draw:> data <symbol>

Information printed by this command depends on the symbol specified:

• g – Prints the information contained in the header of the file;

• c or f – Prints messages generated during the loading of the STEP file (when the procedure of the integrity
of the loaded data check is performed) and the resulting statistics (f works only with fails while c with both fail
and warning messages) ;

• t – The same as c or f, with a list of failed or warned entities;

• m or l – The same as t but also prints a status for each entity;

• e – Lists all entities of the model with their numbers, types, validity status etc;

• R – The same as e but lists only root entities.

There is a set of special objects, which can be used to operate with a loaded model. They can be of the following
types:

• Selection Filters – allow selecting subsets of entities of the loaded model;

• Counter – calculates some statistics on the model data.

A list of these objects defined in the current session can be printed in DRAW by command

Draw:> listitems.

Command

Draw:> givelist <selection_name>

prints a list of a subset of loaded entities defined by the <selection> argument:

• xst-model-all all entities of the model;

• xst-model-roots all roots;

• xst-pointed (Interactively) pointed entities (not used in DRAW);

• xst-transferrable-all all transferable (recognized) entities;

• xst-transferrable-roots Transferable roots.

The command listtypes gives a list of entity types, which were encountered in the last loaded file (with a number of
STEP entities of each type).

The list cannot be shown for all entities but for a subset of them. This subset is defined by an optional selection
argument (for the list of possible values for STEP, see the table above).

Two commands are used to calculate statistics on the entities in the model:

Draw:> count <counter> [<selection>]
Draw:> listcount <counter> [<selection>]

(c) Open CASCADE 2018

5.4 Analyzing the transferred data 40

The former only prints a count of entities while the latter also gives a list of them.

The optional selection argument, if specified, defines a subset of entities, which are to be taken into account. The
first argument should be one of the currently defined counters:

• xst-types – calculates how many entities of each OCCT type exist

• step214-types – calculates how many entities of each STEP type exist

Entities in the STEP file are numbered in the succeeding order. An entity can be identified either by its number or
by its label. Label is the letter # followed by the rank.

• Draw:> elab # outputs a label for an entity with a known number.

• Draw:> enum # prints a number for the entity with a given label.

• Draw:> entity # <level_of_information> outputs the contents of a STEP entity.

• Draw: estat # outputs the list of entities referenced by a given entity and the list of entities referencing to it.

• Draw: dumpassembly prints a STEP assembly as a tree.

Information about product names, next_assembly_usage_occurence, shape_definition_representation, context←↩
_dependent_shape_representation or mapped_item entities that are involved into the assembly structure will be
printed.

5.4.2 Estimating the results of reading STEP

All the following commands are available only after data is converted into OCCT shapes (i.e. after command
214read).

Command Draw:> tpstat [∗|?]<symbol> [<selection>] is provided to get all statistics on the last transfer, including
a list of transferred entities with mapping from STEP to OCCT types, as well as fail and warning messages. The
parameter <symbol> defines what information will be printed:

• g – General statistics (a list of results and messages)

• c – Count of all warning and fail messages

• C – List of all warning and fail messages

• f – Count of all fail messages

• F – List of all fail messages

• n – List of all transferred roots

• s – The same, with types of source entity and the type of result

• b – The same, with messages

• t – Count of roots for geometrical types

• r – Count of roots for topological types

• l – The same, with the type of the source entity

The sign ∗ before parameters n, s, b, t, r makes it work on all entities (not only on roots).

The sign ? before n, s, b, t limits the scope of information to invalid entities.

Optional argument <selection> can limit the action of the command to the selection, not to all entities.

To get help, run this command without arguments.

(c) Open CASCADE 2018

5.5 Writing a STEP file 41

The command Draw:> tpstat ∗1 gives statistics on the result of translation of different types of entities (taking check
messages into account) and calculates summary translation ratios.

To get information on OCCT shape contents use command Draw:> statshape <shape_name> . It outputs the
number of each kind of shapes (vertex, edge, wire, etc.) in the shape and some geometrical data (number of C0
surfaces, curves, indirect surfaces, etc.).

The number of faces is returned as a number of references. To obtain the number of single instances, the standard
command (from TTOPOLOGY executable) nbshapes can be used.

To analyze the internal validity of the shape, use command Draw:> checkbrep <shape_name> <expurged_←↩
shape_name>. It checks shape geometry and topology for different cases of inconsistency, like self-intersecting
wires or wrong orientation of trimming contours. If an error is found, it copies bad parts of the shape with the names
expurged_subshape_name _# and generates an appropriate message. If possible this command also tries to find
STEP entities the OCCT shape was produced from.

<expurged_shape_name> will contain the original shape without invalid subshapes. To get information on toler-
ances of the shape use command Draw:> tolerance <shape_name> [<min> [<max>] [<symbol>]] . It outputs
maximum, average and minimum values of tolerances for each kind of subshapes having tolerances and for the
whole shape in general.

When specifying min and max arguments this command saves shapes with tolerances in the range [min, max] with
names shape_name_... and gives their total number.

<Symbol> is used for specifying the kind of sub-shapes to analyze:

• v – for vertices,

• e – for edges,

• f – for faces,

• c – for shells and faces.

5.5 Writing a STEP file

For writing shapes to a STEP file, the following parameters are defined (see above, the command ∗param∗):

Description Name Values Meaning

Uncertainty for resulting entities Write.precision.mode -1, 0, 1 or 2 If -1 the uncertainty value is set to
the minimal tolerance of CASCA←↩
DE subshapes. If 0 the uncertain-
ty value is set to the average tol-
erance of CASCADE subshapes.
If 1 the uncertainty value is set to
the maximal tolerance of CASCA←↩
DE subshapes. If 2 the uncertainty
value is set to write.precision.val

Value of uncertainty Write.precision.val real Value of uncertainty (used if previ-
ous parameter is 2).

Several shapes can be written in one file. To start writing a new file, enter command Draw:> newmodel. Actually,
command newmodel will clear the InterfaceModel to empty it, and the next command will convert the specified
shape to STEP entities and add them to the InterfaceModel:

Draw:> stepwrite <mode> <shape_name> [<file_name>]

The following modes are available :

• a – "as is" – the mode is selected automatically depending on the type & geometry of the shape;

(c) Open CASCADE 2018

5.5 Writing a STEP file 42

• m – manifold_solid_brep or brep_with_voids

• f – faceted_brep

• w – geometric_curve_set

• s – shell_based_surface_model

After a successful translation, if file_name parameter is not specified, the procedure asks you whether to write a
STEP model in the file or not:

execution status : 1
Mode (0 end, 1 file) :

It is necessary to call command newmodel to perform a new translation of the next OCCT shape.

(c) Open CASCADE 2018

6 Reading from and writing to STEP 43

6 Reading from and writing to STEP

The STEPCAFControl package (TKXDESTEP toolkit) provides tools to read and write STEP files (see XDE User's
Guide).

In addition to the translation of shapes implemented in basic translator, it provides the following:

• STEP assemblies, read as OCCT compounds by basic translator, are translated to XDE assemblies;

• Names of products are translated and assigned to assembly components and instances in XDE;

• STEP external references are recognized and translated (if external documents are STEP files);

• Colors, layers, materials and validation properties assigned to parts or subparts are translated;

• STEP Geometric Dimensions and Tolerances are translated;

• STEP Saved Views are translated.

6.1 Reading from STEP

Load a STEP file

Before performing any other operation, you must load a STEP file with:

STEPCAFControl_Reader reader(XSDRAW::Session(), Standard_False);
IFSelect_ReturnStatus stat = reader.ReadFile("filename.stp");

Loading the file only memorizes the data, it does not translate it.

Check the loaded STEP file

This step is not obligatory. See a description of this step in section Checking the STEP file.

Set parameters for translation to XDE

See a description of this step in section Setting the translation parameters.

In addition, the following parameters can be set for XDE translation of attributes:

• Parameter for transferring colors:

reader.SetColorMode(mode);
// mode can be Standard_True or Standard_False

• Parameter for transferring names:

reader.SetNameMode(mode);
// mode can be Standard_True or Standard_False

Translate a STEP file to XDE

The following function performs a translation of the whole document:

Standard_Boolean ok = reader.Transfer(doc);

where doc is a variable which contains a handle to the output document and should have a type Handle(TDocStd←↩
_Document).

(c) Open CASCADE 2018

6.2 Attributes read from STEP 44

6.2 Attributes read from STEP

Colors

Colors are implemented in accordance with Recommended practices for model styling and
organization sections 4 and 5.

The following attributes are imported from STEP file:

• colors linked to assemblies, solids, shells, faces/surfaces, wireframes, edges/curves and vertices/points;

• information about invisibility.

The following attributes are mentioned in the Recommended Practices, but not handled by OCCT:

• styling different sides of surfaces with different colors;

• transparency and reflectance for surfaces;

• curve styles;

• point markers.

Layers

Layers are implemented in accordance with Recommended practices for model styling and
organization section 6. All layers are imported, but invisibility styles are skipped.

Materials

Materials are implemented in accordance with Recommended practices for material identification
and density section 4. OCCT translator processes materials attached to solids in shape representations. The
name, description and density (name and value) are imported for each material.

Validation properties

Validation properties are implemented in accordance with Recommended practices for geometric
and assembly validation properties section 4 for AP214. OCCT processes several types of geo-
metric validation properties for solids, shells and geometric sets:

• area;

• volume;

• centroid.

Geometric dimensions and tolerances

General types of STEP entities imported by OCCT are listed in the table below:

STEP entity OCCT attribute

Dimensional_Size XCAFDoc_Dimension
Dimensional_Location XCAFDoc_Dimension
Dimensional_Size_With_Path XCAFDoc_Dimension
Dimensional_Location_With_Path XCAFDoc_Dimension
Angular_Size XCAFDoc_Dimension

(c) Open CASCADE 2018

http://www.cax-if.org/documents/rec_prac_styling_org_v15.pdf
http://www.cax-if.org/documents/rec_prac_styling_org_v15.pdf
http://www.cax-if.org/documents/rec_prac_styling_org_v15.pdf
http://www.cax-if.org/documents/rec_prac_styling_org_v15.pdf
http://www.cax-if.org/documents/RecPrac_MaterialDensity_v21.pdf
http://www.cax-if.org/documents/RecPrac_MaterialDensity_v21.pdf
http://www.cax-if.org/documents/rec_prac_gvp_v44.pdf
http://www.cax-if.org/documents/rec_prac_gvp_v44.pdf

6.2 Attributes read from STEP 45

STEP entity OCCT attribute
Angular_Location XCAFDoc_Dimension

Geometric_Tolerance and subtypes XCAFDoc_GeometricTolerance

Datum XCAFDoc_Datum
Datum_Feature XCAFDoc_Datum
Datum_Target XCAFDoc_Datum

Processing of GD&T is realized in accordance with Recommended practices for the Representation
and Presentation of Product Manufacturing for AP242. The general restriction is that OCCT S←↩
TEP Reader imports GD&T assigned only to shapes (faces, edges, vertices, etc) or to shape groups from general
shape model i.e. any constructive geometries are not translated as referenced shapes.

Dimensions

Dimensions are implemented according to section 5 of the latter document. Additionally to the reference shapes,
the Reader imports from STEP file some auxiliary geometry for dimensional line building: connection points and
line orientation, if exist.

The following values and modifiers described in sections 5.2 and 5.3 can be imported from STEP file:

• qualifiers (minimum, maximum and average);

• plus/minus bounds;

• value range;

• class of tolerance;

• text notes, attached to dimension value;

• dimension modifiers type 2 (Table 8);

• number of decimal places.

Datums

Datums are implemented in accordance with sections 6.5 and 6.6.1-6.6.2. Each datum can have one or several
datum features (shapes from the model, to which the datum is linked) and datum targets (auxiliary geometry: point,
line, rectangle, circle or area).

Tolerances

Tolerances are implemented in accordance with sections 6.7-6.9 with several restrictions.

Types of imported tolerances:

• simple tolerances (see Table 10);

• tolerance with modifiers (section 6.9.3);

• tolerance with maximum value (section 6.9.5);

• tolerance with datums (section 6.9.7 (simple datums and datum with modifiers) and 6.9.8 (common datums));

• superposition of the mentioned types.

Not all tolerance zones can be imported by OCCT STEP Reader, only the Tolerance Zones with associated symbols
from Table 11, Projected tolerance zone (section 6.9.2.2) and Runout zone definition.

(c) Open CASCADE 2018

https://www.cax-if.org/documents/rec_pracs_pmi_v40.pdf
https://www.cax-if.org/documents/rec_pracs_pmi_v40.pdf

6.3 Writing to STEP 46

Presentations

Each semantic representation of GD&T (Dimension, Tolerance, Datum Feature or Datum Target) can have a pre-
sentation; its processing by OCCT is implemented in accordance with sections 7.3, 8 and 9.1-9.2. Presentations
have several types:

• Graphic Presentation (polylines or tessellated wireframes) - partially implemented in OCCT;

• Minimal Presentation (position and orientation) - implemented in OCCT as a part of Graphic presentation;

• Character-based Presentation (3D Text with information about fonts, curve styles etc.) - not handled by OCCT.

Note, that separate Minimal presentation and Character-based Presentation are not described in any Recommend-
ed Practices, so there is no agreement about how such information should be saved in STEP file.

OCCT STEP Reader imports only Annotation Planes, outline/stroked Polylines and Tessellated wireframes, i.e. all
styling information (color, curve style, etc.) and filled characters are missed.

OCCT STEP Reader also handles Annotations, linked directly to shapes (section 9.3.1), processing of these pre-
sentations is subject to the same restrictions as the processing of presentations, linked to GD&T semantic.

Geometric dimensions and tolerances AP214

Simple types of GD&T (Dimensions, Tolerances and Datums without presentations or any types of modifiers) are al-
so handled in AP214. However, according to the Recommended Practices for the Representation and Presentation
of Product Manufacturing, this implementation is obsolete.

Saved views

Saved views are implemented in accordance with Recommended practices for the Representation
and Presentation of Product Manufacturing section 9.4.1-9.4.4. For each Saved View OCCT S←↩
TEP Reader will retrieve the following attributes:

• set of displayed shape representations;

• set of displayed PMI presentations;

• projection point;

• view direction;

• up direction of view window;

• horizontal size of view window;

• vertical size of view window;

• zoom factor;

• clipping planes (single plane of combination of planes);

• front and back plane clipping.

6.3 Writing to STEP

The translation from XDE to STEP can be initialized as follows:

STEPCAFControl_Writer aWriter(XSDRAW::Session(),Standard_False);

(c) Open CASCADE 2018

http://www.cax-if.org/documents/rec_pracs_pmi_v40.pdf
http://www.cax-if.org/documents/rec_pracs_pmi_v40.pdf

6.4 Attributes written to STEP 47

Set parameters for translation from XDE to STEP

The following parameters can be set for a translation of attributes to STEP:

• For transferring colors:

aWriter.SetColorMode(mode);
// mode can be Standard_True or Standard_False

• For transferring names:

aWriter.SetNameMode(mode);
// mode can be Standard_True or Standard_False

Translate an XDE document to STEP

You can perform the translation of document by calling the function:

IFSelect_ReturnStatus aRetSt = aWriter.Transfer(doc);

where doc is a variable, which contains a handle to the input document for transferring and should have a type
Handle(TDocStd_Document).

Write a STEP file

Write a STEP file with:

IFSelect_ReturnStatus statw = aWriter.WriteFile("filename.stp");

or

IFSelect_ReturnStatus statw = writer.WriteFile (S);

where S is OStream.

6.4 Attributes written to STEP

Colors

The following attributes are exported to STEP file:

• colors linked to assemblies, solids, shells, faces/surfaces, wireframes, edges/curves;

• information about visibility.

Restrictions:

• colors and visibility information for points is not exported by default, it is necessary to use write.step.vertex.←↩
mode parameter;

• all colors are always applied to both sides of surfaces;

• all curves are exported with 'continuous' curve style.

Layers

All layers are exported, but invisibility styles can be connected only to shapes.

(c) Open CASCADE 2018

6.4 Attributes written to STEP 48

Materials

For solids with materials, the material is exported to STEP file (name, description and density (name and value)).

Validation properties

Geometric validation properties, such as volume, area and centroid, which are attached to shape, are exported to
STEP file.

Geometric dimensions and tolerances

All entities, which can be imported from STEP, can be exported too. Please see the same item in section Reading
from STEP to find more information.

Note: OCCT use AP214 by default, so for GD&T exporting AP242 should be set manually:

Interface_Static::SetCVal("write.step.schema", "AP242DIS"));

or

Interface_Static::SetIVal("write.step.schema", 5));

Saved views

Saved Views are not exported by OCCT.

(c) Open CASCADE 2018

	Introduction
	STEP Exchanges in Open Cascade technology
	STEP Interface

	Reading STEP
	Procedure
	Domain covered
	Assemblies
	Shape representations
	Topological entities
	Geometrical entities

	Description of the process
	Loading the STEP file
	Checking the STEP file
	Setting the translation parameters
	Performing the STEP file translation
	Getting the translation results
	Selecting STEP entities for translation

	Mapping STEP entities to Open CASCADE Technology shapes
	Assembly structure representation entities
	Models
	Topological entities
	Geometrical entities

	Tolerance management
	Values used for tolerances during reading STEP
	Initial setting of tolerances in translating objects
	Transfer process

	Code architecture
	Example

	Writing STEP
	Procedure
	Domain covered
	Writing geometry and topology
	Writing assembly structures

	Description of the process
	Initializing the process
	Setting the translation parameters
	Performing the Open CASCADE Technology shape translation
	Writing the STEP file

	Mapping Open CASCADE Technology shapes to STEP entities
	Assembly structures and product information
	Topological shapes
	Geometrical objects

	Tolerance management
	Code architecture
	Graph of calls

	Example

	Physical STEP file reading and writing
	Architecture of STEP Read and Write classes
	General principles
	Complex entities

	Physical file reading
	Loading a STEP file and syntactic analysis of its contents
	Mapping STEP entities to arrays of strings
	Creating empty Open CASCADE Technology objects that represent STEP entities
	Initializing Open CASCADE Technology objects
	Building a graph

	How to add a new entity in scope of the STEP processor
	Physical file writing
	How to add a new entity to write in the STEP file.

	Using DRAW
	DRAW STEP Commands Overview
	Setting the interface parameters
	Reading a STEP file
	Analyzing the transferred data
	Checking file contents
	Estimating the results of reading STEP

	Writing a STEP file

	Reading from and writing to STEP
	Reading from STEP
	Attributes read from STEP
	Writing to STEP
	Attributes written to STEP

